This paper highlights some theoretical aspects of potential vorticity(PV) and discusses some of the insights the PV perspective has given us. The topics covered include the nature of PV, its controlling role in the ...This paper highlights some theoretical aspects of potential vorticity(PV) and discusses some of the insights the PV perspective has given us. The topics covered include the nature of PV, its controlling role in the symmetric stability of the atmosphere, its inversion to give the flow field, Rossby waves and their coupling to give baroclinic instability, PV and midlatitude weather systems and, finally, insights into tropical motions.展开更多
Based on TOPEX/Poseidon (T/P) and ERS-1 and 2 satellite altimeter data between October 1992 and December 2000, high frequency oscillations with periods less than 150 d are analyzed and their spatial distributions are ...Based on TOPEX/Poseidon (T/P) and ERS-1 and 2 satellite altimeter data between October 1992 and December 2000, high frequency oscillations with periods less than 150 d are analyzed and their spatial distributions are described. The ratio, instead of the energy itself, of the energy corresponding to certain frequency band from power spectrum relative to the total energy in the 20~143 d range is analyzed. The results show that the period of the most energetic oscillations in this band increases with latitude from about 1 month near the tropics to about 4 months near 30°, in agreement with the latitudinal dependency of the phase speed of westward propagating long Rossby waves,which dominate the variability in those latitudes.As a result,the global spatial distributions of the period of the dominant oscillations are largely zonal, with relatively small differences between different ocean basins. It suggests that the oscillations with periods around 60 d are mainly associated with planetary Rossby waves except the often regarded as tidal aliasing.展开更多
The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution globa...The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution global HYCOM model, the total Luzon Strait Transport (LST) has remarkable subseasonal oscillations with a typical period of 90 to 120 days, and an average value of 1.9 Sv into SCS. Further spectrum analysis shows that the temporal variability of the LST at different depth is remarkable different. In the upper layer (0–300 m), westward inflow has significant seasonal and subseasonal variability. In the bottom layer (below 1 200 m), eastward outflow exhibits remarkable seasonal variability, while subseasonal variability is also clear. In the intermediate layer, the westward inflow is slightly bigger than the eastward outflow, and both of them have obvious seasonal and subseasonal variability. Because the seasonal variation of westward inflow and eastward outflow is opposite, the total transport of intermediate layer exhibits significant 50–150 days variation, without obvious seasonal signals. The westward Rossby waves with a period of 90 to 120 days in the Western Pacific have very clear correlationship with the Luzon Strait Transport, this indicates that the interaction between these westward Rossby waves and Kuroshio might be the possible mechanism of the subseasonal variation of the LST.展开更多
On the basis of maps of sea level anomalies data set from October 1992 to January 2004, pronounced low frequency variations with periods of about 500 d are detected in the area near 20°N from 160°W to 130...On the basis of maps of sea level anomalies data set from October 1992 to January 2004, pronounced low frequency variations with periods of about 500 d are detected in the area near 20°N from 160°W to 130°E. A linear two-layer model is employed to explain the mechanism. It is found that the first-mode long baroclinic Rossby waves at 20°N in the northwest Pacific propagate westward in the form of free waves at a speed of about 10.3 cm/s. This confirms that the observed low frequency variabilities appear as baroclinic Rossby waves. It further shows that these low frequency variabilities around 20°N in the northwest Pacific can potentially be predicted with a lead up to 900 d.展开更多
Based on instability theory and some former studies, the Simple Ocean Data Assimilation (SODA) data are analyzed to further study the difference between the propagation of the ENSO-related oceanic anomaly in the off...Based on instability theory and some former studies, the Simple Ocean Data Assimilation (SODA) data are analyzed to further study the difference between the propagation of the ENSO-related oceanic anomaly in the off-equatorial North Pacific Ocean before and after 1976. The investigation shows that after 1976 in the off-equatorial North Pacific Ocean, there is a larger area where the necessary conditions for baroclinic and/or barotropic instability are satisfied, which may help oceanic anomaly signals propagating in the form of Rossby waves to absorb energy from the mean currents so that they can grow and intensify. The baroclinic energy conversion rate in the North Pacific after 1976 is much higher than before 1976, which indicates that the baroclinic instability has intensified since 1976. Prom another perspective, the instability analysis gives an explanation of the phenomena that the ENSO-related oceanic anomaly signal in the North Pacific has intensified since 1976.展开更多
The mechanisms of establishment and adjustment of the basin-scale circulation in the South China Sea (SCS) during the monsoon-forced spin-up are investigated using a high resolu-tion circulation model in this paper. T...The mechanisms of establishment and adjustment of the basin-scale circulation in the South China Sea (SCS) during the monsoon-forced spin-up are investigated using a high resolu-tion circulation model in this paper. The process, in which the upper layer in the SCS evolved from the motionless state to the one when the basin-scale circulation initially established, was described, and the participation of various Kelvin and Rossby waves and their traveling time scales in differ-ent stages was revealed. It shows that the coastal trapped Kelvin waves and the westward propa-gating Rossby waves play important roles in the adjustment of the basin-scale circulation. Fur-thermore, the characteristic timescale of establishment for the basin-scale circulation in the upper layer of the SCS was obtained.展开更多
文摘This paper highlights some theoretical aspects of potential vorticity(PV) and discusses some of the insights the PV perspective has given us. The topics covered include the nature of PV, its controlling role in the symmetric stability of the atmosphere, its inversion to give the flow field, Rossby waves and their coupling to give baroclinic instability, PV and midlatitude weather systems and, finally, insights into tropical motions.
文摘Based on TOPEX/Poseidon (T/P) and ERS-1 and 2 satellite altimeter data between October 1992 and December 2000, high frequency oscillations with periods less than 150 d are analyzed and their spatial distributions are described. The ratio, instead of the energy itself, of the energy corresponding to certain frequency band from power spectrum relative to the total energy in the 20~143 d range is analyzed. The results show that the period of the most energetic oscillations in this band increases with latitude from about 1 month near the tropics to about 4 months near 30°, in agreement with the latitudinal dependency of the phase speed of westward propagating long Rossby waves,which dominate the variability in those latitudes.As a result,the global spatial distributions of the period of the dominant oscillations are largely zonal, with relatively small differences between different ocean basins. It suggests that the oscillations with periods around 60 d are mainly associated with planetary Rossby waves except the often regarded as tidal aliasing.
基金The Ministry of Science and Technology of China (National Key Program for Developing Basic Science) undercontract No. 2007CB411803the National 863 High-tech Program under contract No. 2008AA09A402.
文摘The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution global HYCOM model, the total Luzon Strait Transport (LST) has remarkable subseasonal oscillations with a typical period of 90 to 120 days, and an average value of 1.9 Sv into SCS. Further spectrum analysis shows that the temporal variability of the LST at different depth is remarkable different. In the upper layer (0–300 m), westward inflow has significant seasonal and subseasonal variability. In the bottom layer (below 1 200 m), eastward outflow exhibits remarkable seasonal variability, while subseasonal variability is also clear. In the intermediate layer, the westward inflow is slightly bigger than the eastward outflow, and both of them have obvious seasonal and subseasonal variability. Because the seasonal variation of westward inflow and eastward outflow is opposite, the total transport of intermediate layer exhibits significant 50–150 days variation, without obvious seasonal signals. The westward Rossby waves with a period of 90 to 120 days in the Western Pacific have very clear correlationship with the Luzon Strait Transport, this indicates that the interaction between these westward Rossby waves and Kuroshio might be the possible mechanism of the subseasonal variation of the LST.
基金This study was supported by the National Natural Science Foundation of China under contract Nos 40136010 and 40520140074.
文摘On the basis of maps of sea level anomalies data set from October 1992 to January 2004, pronounced low frequency variations with periods of about 500 d are detected in the area near 20°N from 160°W to 130°E. A linear two-layer model is employed to explain the mechanism. It is found that the first-mode long baroclinic Rossby waves at 20°N in the northwest Pacific propagate westward in the form of free waves at a speed of about 10.3 cm/s. This confirms that the observed low frequency variabilities appear as baroclinic Rossby waves. It further shows that these low frequency variabilities around 20°N in the northwest Pacific can potentially be predicted with a lead up to 900 d.
文摘Based on instability theory and some former studies, the Simple Ocean Data Assimilation (SODA) data are analyzed to further study the difference between the propagation of the ENSO-related oceanic anomaly in the off-equatorial North Pacific Ocean before and after 1976. The investigation shows that after 1976 in the off-equatorial North Pacific Ocean, there is a larger area where the necessary conditions for baroclinic and/or barotropic instability are satisfied, which may help oceanic anomaly signals propagating in the form of Rossby waves to absorb energy from the mean currents so that they can grow and intensify. The baroclinic energy conversion rate in the North Pacific after 1976 is much higher than before 1976, which indicates that the baroclinic instability has intensified since 1976. Prom another perspective, the instability analysis gives an explanation of the phenomena that the ENSO-related oceanic anomaly signal in the North Pacific has intensified since 1976.
基金the MOST Programs (Grant No. 1999043806 2001DIA50041) and the CAS Knowledge Innovation Project (Grant No. KZCX2-202)
文摘The mechanisms of establishment and adjustment of the basin-scale circulation in the South China Sea (SCS) during the monsoon-forced spin-up are investigated using a high resolu-tion circulation model in this paper. The process, in which the upper layer in the SCS evolved from the motionless state to the one when the basin-scale circulation initially established, was described, and the participation of various Kelvin and Rossby waves and their traveling time scales in differ-ent stages was revealed. It shows that the coastal trapped Kelvin waves and the westward propa-gating Rossby waves play important roles in the adjustment of the basin-scale circulation. Fur-thermore, the characteristic timescale of establishment for the basin-scale circulation in the upper layer of the SCS was obtained.