Plant isoprenoids are formed from precursors synthesized by the mevalonate (MVA) pathway in the cytosol or by the methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. Although some exchange of precursors occ...Plant isoprenoids are formed from precursors synthesized by the mevalonate (MVA) pathway in the cytosol or by the methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. Although some exchange of precursors occurs, cytosolic sesquiterpenes are assumed to derive mainly from MVA, while plastidial monoterpenes are produced preferentially from MEP precursors. Additional complexity arises in the first step of the MEP pathway, which is typically catalyzed by two divergent 1-deoxy-D-xylulose 5-phosphate synthase isoforms (DXS1, DXS2). In tomato (Solanum lycopersicum), the SIDXS1 gene is ubiquitously expressed with highest levels during fruit ripening, whereas SIDXS2 transcripts are abundant in only few tissues, including young leaves, petals, and isolated trichomes. Specific down-regulation of SIDXS2 expression was performed by RNA interference in transgenic plants to investigate feedback mechanisms. SIDXS2 down-regulation led to a decrease in the monoterpene β-phellandrene and an increase in two sesquiterpenes in trichomes. Moreover, incorporation of MVA-derived precursors into residual monoterpenes and into sesquiterpenes was elevated as determined by comparison of ^13C to ^12C natural isotope ratios. A compensatory up-regulation of SIDXS1 was not observed. Down-regulated lines also exhibited increased trichome density and showed less damage by leaf-feeding Spodoptera littoralis caterpillars. The results reveal novel, non-redundant roles of DXS2 in modulating isoprenoid metabolism and a pronounced plasticity in isoprenoid precursor allocation.展开更多
Bone morphogenetic proteins(BMPs) play a critical role in the growth and steroidogenesis of granulosa cells(GCs).BMP signals act through membrane-bound heteromeric serine/threonine kinase receptors.Upon ligand binding...Bone morphogenetic proteins(BMPs) play a critical role in the growth and steroidogenesis of granulosa cells(GCs).BMP signals act through membrane-bound heteromeric serine/threonine kinase receptors.Upon ligand binding,BMPs activate intracellular Smad proteins and regulate growth and apoptosis in various cell types.The objective of this study was to demonstrate the effects of BMP/Smad signal on growth and steroidogenesis of porcine GCs.A strategy of RNA interference(RNAi)-mediated 'gene silencing' of Smad4,a core molecule mediating the intracellular BMP/Smad signal transduction pathways,was used to interrupt endogenous BMP/Smad signaling.Results indicate that Smad4-small interfering RNA(siRNA) caused specific inhibition of Smad4 mRNA and protein expression after transfection.Interrupted endogenous BMP/Smad signaling significantly inhibited growth,and induced apoptosis of porcine GCs,while decreasing estradiol production.In addition,interrupted BMP/Smad signaling significantly(P<0.05) changed the expression of Cyclin D2,CDK4,Bcl-2,and Cyp19a1.These findings provide new insights into how BMP/Smad signaling regulates the growth and steroidogenesis of porcine GCs.展开更多
文摘Plant isoprenoids are formed from precursors synthesized by the mevalonate (MVA) pathway in the cytosol or by the methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. Although some exchange of precursors occurs, cytosolic sesquiterpenes are assumed to derive mainly from MVA, while plastidial monoterpenes are produced preferentially from MEP precursors. Additional complexity arises in the first step of the MEP pathway, which is typically catalyzed by two divergent 1-deoxy-D-xylulose 5-phosphate synthase isoforms (DXS1, DXS2). In tomato (Solanum lycopersicum), the SIDXS1 gene is ubiquitously expressed with highest levels during fruit ripening, whereas SIDXS2 transcripts are abundant in only few tissues, including young leaves, petals, and isolated trichomes. Specific down-regulation of SIDXS2 expression was performed by RNA interference in transgenic plants to investigate feedback mechanisms. SIDXS2 down-regulation led to a decrease in the monoterpene β-phellandrene and an increase in two sesquiterpenes in trichomes. Moreover, incorporation of MVA-derived precursors into residual monoterpenes and into sesquiterpenes was elevated as determined by comparison of ^13C to ^12C natural isotope ratios. A compensatory up-regulation of SIDXS1 was not observed. Down-regulated lines also exhibited increased trichome density and showed less damage by leaf-feeding Spodoptera littoralis caterpillars. The results reveal novel, non-redundant roles of DXS2 in modulating isoprenoid metabolism and a pronounced plasticity in isoprenoid precursor allocation.
基金(No. 2006AA10Z136) supported by National High-Tech R & D Program (863) of China
文摘Bone morphogenetic proteins(BMPs) play a critical role in the growth and steroidogenesis of granulosa cells(GCs).BMP signals act through membrane-bound heteromeric serine/threonine kinase receptors.Upon ligand binding,BMPs activate intracellular Smad proteins and regulate growth and apoptosis in various cell types.The objective of this study was to demonstrate the effects of BMP/Smad signal on growth and steroidogenesis of porcine GCs.A strategy of RNA interference(RNAi)-mediated 'gene silencing' of Smad4,a core molecule mediating the intracellular BMP/Smad signal transduction pathways,was used to interrupt endogenous BMP/Smad signaling.Results indicate that Smad4-small interfering RNA(siRNA) caused specific inhibition of Smad4 mRNA and protein expression after transfection.Interrupted endogenous BMP/Smad signaling significantly inhibited growth,and induced apoptosis of porcine GCs,while decreasing estradiol production.In addition,interrupted BMP/Smad signaling significantly(P<0.05) changed the expression of Cyclin D2,CDK4,Bcl-2,and Cyp19a1.These findings provide new insights into how BMP/Smad signaling regulates the growth and steroidogenesis of porcine GCs.