Thermal vibration of single-layered graphene sheets (SLGSs) is investigated using plate model together with the law of equi-partition of energy and the molecular dynamics (MD) method based on the condensed-phase Optim...Thermal vibration of single-layered graphene sheets (SLGSs) is investigated using plate model together with the law of equi-partition of energy and the molecular dynamics (MD) method based on the condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field.The in-plane stiffness and Poisson ratio of SLGSs are calculated by stretching SLGSs.The effective thickness of SLGSs is obtained by the MD simulations for the thermal vibration of SLGSs through the natural frequency.The root-mean-squared (RMS) amplitudes for SLGSs of differing temperatures and boundary conditions are calculated by the MD,and are compared with the results calculated by the thin plate model together with the law of equi-partition of energy.At the center of SLGSs,the thin plate theory can predict the MD results reasonably well.For the difference of bonding structure of the edge atoms,the deviation between the MD results and plate theory becomes more readily apparent near the edges of SLGSs.展开更多
In this research, we present a seismic trace interpolation method which uses seismic data with surface-related multiples. It is different from conventional seismic data interpolation using information transformation o...In this research, we present a seismic trace interpolation method which uses seismic data with surface-related multiples. It is different from conventional seismic data interpolation using information transformation or extrapolation of adjacent channels for reconstruction of missing seismic data. In this method there are two steps, first, we construct pseudo-primaries by cross-correlation of surface multiple data to extract the missing near- offset information in multiples, which are not displayed in the acquired seismic record. Second, we correct the pseudo-primaries by applying a Least-squares Matching Filter (LMF) and RMS amplitude correction method in time and space sliding windows. Then the corrected pseudo-primaries can be used to fill the data gaps. The method is easy to implement, without the need to separate multiples and primaries. It extracts the seismic information contained by multiples for filling missing traces. The method is suitable for seismic data with surfacerelated multiples.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072108)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201028)+1 种基金Program for New Century Excellent Talents in University (Grant No. NCET-11-0832)the Foundation of Nanjing University Aeronautics and Astronautics
文摘Thermal vibration of single-layered graphene sheets (SLGSs) is investigated using plate model together with the law of equi-partition of energy and the molecular dynamics (MD) method based on the condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field.The in-plane stiffness and Poisson ratio of SLGSs are calculated by stretching SLGSs.The effective thickness of SLGSs is obtained by the MD simulations for the thermal vibration of SLGSs through the natural frequency.The root-mean-squared (RMS) amplitudes for SLGSs of differing temperatures and boundary conditions are calculated by the MD,and are compared with the results calculated by the thin plate model together with the law of equi-partition of energy.At the center of SLGSs,the thin plate theory can predict the MD results reasonably well.For the difference of bonding structure of the edge atoms,the deviation between the MD results and plate theory becomes more readily apparent near the edges of SLGSs.
基金sponsored by:the National Basic Research Program of China (973 Program) (2007CB209605)the National Natural Science Foundation of China (40974073)the National Hi-tech Research and Development Program of China (863 Program) (2009AA06Z206)
文摘In this research, we present a seismic trace interpolation method which uses seismic data with surface-related multiples. It is different from conventional seismic data interpolation using information transformation or extrapolation of adjacent channels for reconstruction of missing seismic data. In this method there are two steps, first, we construct pseudo-primaries by cross-correlation of surface multiple data to extract the missing near- offset information in multiples, which are not displayed in the acquired seismic record. Second, we correct the pseudo-primaries by applying a Least-squares Matching Filter (LMF) and RMS amplitude correction method in time and space sliding windows. Then the corrected pseudo-primaries can be used to fill the data gaps. The method is easy to implement, without the need to separate multiples and primaries. It extracts the seismic information contained by multiples for filling missing traces. The method is suitable for seismic data with surfacerelated multiples.