Free from phase-matching constraints,plasmonic metasurfaces have contributed significantly to the control of optical nonlinearity and enhancement of nonlinear generation efficiency by engineering subwavelength meta-at...Free from phase-matching constraints,plasmonic metasurfaces have contributed significantly to the control of optical nonlinearity and enhancement of nonlinear generation efficiency by engineering subwavelength meta-atoms.However,high dissipative losses and inevitable thermal heating limit their applicability in nonlinear nanophotonics.All-dielectric metasurfaces,supporting both electric and magnetic Mie-type resonances in their nanostructures,have appeared as a promising alternative to nonlinear plasmonics.High-index dielectric nanostructures,allowing additional magnetic resonances,can induce magnetic nonlinear effects,which,along with electric nonlinearities,increase the nonlinear conversion efficiency.In addition,low dissipative losses and high damage thresholds provide an extra degree of freedom for operating at high pump intensities,resulting in a considerable enhancement of the nonlinear processes.We discuss the current state of the art in the intensely developing area of all-dielectric nonlinear nanostructures and metasurfaces,including the role of Mie modes,Fano resonances,and anapole moments for harmonic generation,wave mixing,and ultrafast optical switching.Furthermore,we review the recent progress in the nonlinear phase and wavefront control using all-dielectric metasurfaces.We discuss techniques to realize alldielectric metasurfaces for multifunctional applications and generation of second-order nonlinear processes from complementary metal–oxide–semiconductor-compatible materials.展开更多
We theoretically investigate high-order harmonic generation in a two-color multi-cycle inhomogeneous field combined with a 27th harmonic pulse. By considering a bowtie-shaped gold nanostructure, the spatiotemporal pro...We theoretically investigate high-order harmonic generation in a two-color multi-cycle inhomogeneous field combined with a 27th harmonic pulse. By considering a bowtie-shaped gold nanostructure, the spatiotemporal profiles of enhanced plasmonic fields are obtained by solving the Maxwell equation using finite-domain time-difference method. Based on quantum-mechanical and classical models, the effect of 27th harmonic pulse, temporal profile of enhanced plasmonic field and inhomogeneity on supercontinuum generation are analyzed and discussed. As a result, broadband supercontinuum can be generated from our approach with optimized gap size of nanostructure. Moreover, these results are not sensitively dependent on the relative phase in the two-color field.展开更多
A three-dimensional numerical model is employed to investigate ULF waves ex-cited by the sudden impulse (SI) of the solar wind dynamic pressure interacting with a dipole magnetosphere. We focus on the solar wind-magne...A three-dimensional numerical model is employed to investigate ULF waves ex-cited by the sudden impulse (SI) of the solar wind dynamic pressure interacting with a dipole magnetosphere. We focus on the solar wind-magnetosphere energy coupling through ULF waves, and the influences of the SI spectrum on the cavity mode structure and the energy deposition due to field line resonances (FLRs) in the magnetosphere. The numerical results show that for a given SI lasting for 1 min with amplitude of 50 mV/m impinging on the subsolar magnetopause, the total ULF energy transported from the solar wind to the magnetosphere is about the magni-tude of 1014 J. The efficiency of the solar wind energy input is around 1%, which depends little on the location of the magnetopause in the model. It is also found that the energy of the cavity mode is confined in the region near the magnetopause, whereas, the energy of the toroidal mode may be distributed among a few specific L-shells. With a given size of the model magnetosphere and plasma density distri-bution, it is shown that the fundamental eigenfrequency of the cavity mode and the central locations of the FLRs do not vary noticeably with the power spectrum of the SI. It is worth noting that the spectrum of the SI affects the excitation of higher harmonics of the global cavity mode. The broader the bandwidth of the SI is, the higher harmonics of cavity mode could be excited. Meanwhile, the corresponding FLRs regions are broadened at the same time, which implies that the global cavity modes and toroidal modes can resonate on more magnetic L-shells when more harmonics of the global cavity modes appear.展开更多
A theoretical model for irreversible double resonance ESE(energy selective electron) device with phonon induced bypass heat leakage which is operating as heat engine system is proposed. The thermodynamic performance i...A theoretical model for irreversible double resonance ESE(energy selective electron) device with phonon induced bypass heat leakage which is operating as heat engine system is proposed. The thermodynamic performance is optimized and the impacts of heat leakage and structure parameters of the electron system on its performance are discussed in detail by using FTT(finite time thermodynamics). Moreover, performances of the ESE system with multiple optimization objective functions, including power output, thermal efficiency, ecological function and efficient power, are explored by numerical examples. New optimal performance regions and the selection plans of optimization objective functions of the ESE system are obtained. It reveals that the characteristic of power versus efficiency behave as loop-shaped curves in spite of the heat leakage which will always decrease the efficiency of the electron engine. By properly choosing the design parameters, the ESE engine can be designed to operate at optimal conditions according to different design purpose. The preferred design area should be located between the optimal effective power condition and the optimal ecological function condition.展开更多
This paper establishes the energy selective electron (ESE) engine with double resonances as a refrigerator in one dimensional (1D) system. It consists of two infinitely large electron reservoirs with different tem...This paper establishes the energy selective electron (ESE) engine with double resonances as a refrigerator in one dimensional (1D) system. It consists of two infinitely large electron reservoirs with different temperatures and chemical potentials, and they are perfectly thermally insulated from each other and interaction only via a double 'idealized energy filter' whose widths are all finite. Taking advantage of the density of state and Fermi distribution in the 1D system, the heat flux into each reservoir may then be calculated. Moreover, the coefficient of performance may be derived from the expressions for the heat flux into the hot and cold reservoirs. The performance characteristic curves are plotted by numerical analysis. The influences of the resonances widths, the energy position of resonance and the space of two resonances on performance of the ESE refrigerator are discussed. The results obtained here have theoretical significance for the understanding of thermodynamic performance of the micro-nano devices.展开更多
Although Fe3O4 particles have exhibited excellent microwave absorbing capacity and widely used in practical application due to the synergistic effect of magnetic loss and dielectric loss,their applications are still l...Although Fe3O4 particles have exhibited excellent microwave absorbing capacity and widely used in practical application due to the synergistic effect of magnetic loss and dielectric loss,their applications are still limited for the required high mass fraction in absorbers.To overcome this problem,the development of Fe3O4 materials with low dimensional structures is necessary.In this study,the shape anisotropic Fe3O4 nanotubes(NTs)with low mass ratios were applied to realize efficient microwave absorption.The NTs with different aspect ratios were prepared through facile electrospinning followed by two-step thermal treatments and mechanical shearing.The cross-linked nanotubular structure enabled the absorbers to have much higher electrical conductivity,multiple scattering,polarization relaxation and better anti-reflection surface,while the shape anisotropic NTs maintained significant multiple resonances with stronger coercivity.These all were beneficial to microwave absorption with enhanced dielectric loss,magnetic loss and sterling impedance matching.Results showed that the absorber with 33.3 wt.%of short Fe3O4 NTs had minimum reflection loss of-58.36 dB at 17.32 GHz with a thickness of 1.27 mm,and had the maximum effective absorbing bandwidth(EAB)of 5.27 GHz when the thickness was 1.53 mm.The absorber with 14.3 wt.%of long Fe3O4 NTs presented the widest EAB in certain radar band with attenuated 80.75%X band and 85%Ku band energy bellow-10 dB at the thickness of 2.65 and 1.53 mm,respectively.This study provided an approach for the development of shape anisotropic magnetic absorbing materials,and broadened their practical applications as magnetic absorbers.展开更多
Bound states in the continuum(BICs)have exhibited extraordinary properties in photonics for enhanced light-matter interactions that enable appealing applications in nonlinear optics,biosensors,and ultrafast optical sw...Bound states in the continuum(BICs)have exhibited extraordinary properties in photonics for enhanced light-matter interactions that enable appealing applications in nonlinear optics,biosensors,and ultrafast optical switches.The most common strategy to apply BICs in a metasurface is by breaking symmetry of resonators in the uniform array that leaks the otherwise uncoupled mode to free space and exhibits an inverse quadratic relationship between quality factor(Q)and asymmetry.Here,we propose a scheme to further reduce scattering losses and improve the robustness of symmetry-protected BICs by decreasing the radiation density with a hybrid BIC lattice.We observe a significant increase of radiative Q in the hybrid lattice compared to the uniform lattice with a factor larger than 14.6.In the hybrid BIC lattice,modes are transferred toГpoint inherited from high symmetric X,Y,and M points in the Brillouin zone that reveal as multiple Fano resonances in the far field and would find applications in hyperspectral sensing.This work initiates a novel and generalized path toward reducing scattering losses and improving the robustness of BICs in terms of lattice engineering that would release the rigid requirements of fabrication accuracy and benefit applications of photonics and optoelectronic devices.展开更多
The application of three-dimensional(3D)plasmonic nanostructures as metamaterials(MMs),nano-antennas,and other devices faces challenges in producing metallic nanostructures with easily definable orientations,sophistic...The application of three-dimensional(3D)plasmonic nanostructures as metamaterials(MMs),nano-antennas,and other devices faces challenges in producing metallic nanostructures with easily definable orientations,sophisticated shapes,and smooth surfaces that are operational in the optical regime and beyond.Here,we demonstrate that complex 3D nanostructures can be readily achieved with focused-ion-beam irradiation-induced folding and examine the optical characteristics of plasmonic“nanograter”structures that are composed of free-standing Au films.These 3D nanostructures exhibit interesting 3D hybridization in current flows and exhibit unusual and well-scalable Fano resonances at wavelengths ranging from 1.6 to 6.4 mm.Upon the introduction of liquids of various refractive indices to the structures,a strong dependence of the Fano resonance is observed,with spectral sensitivities of 1400 nm and 2040 nm per refractive index unit under figures of merit of 35.0 and 12.5,respectively,for low-order and high-order resonance in the near-infrared region.This work indicates the exciting,increasing relevance of similarly constructed 3D free-standing nanostructures in the research and development of photonics and MMs.展开更多
The sources of ultra low frequency (ULF) waves in the magnetosphere are generally believed to be either the external solar wind perturbations or the internal plasma instabilities. When a sudden impulse of the solar wi...The sources of ultra low frequency (ULF) waves in the magnetosphere are generally believed to be either the external solar wind perturbations or the internal plasma instabilities. When a sudden impulse of the solar wind dynamic pressure impinges on the magnetopause, ULF waves might be excited and thus the solar wind energy is transported into the earth's magnetosphere. In this paper, we study the ULF waves excited by different kinds of sudden solar wind pressure impulses through an MHD simulation. We primarily focus on the responses of the earth's magnetosphere to positive/negative impulses of solar wind dynamic pressure, and positive-negative impulse pairs. The simulation results show that the ULF waves excited by positive and negative impulse have the same amplitude and frequency, with 180° difference in phase, if the amplitude and durations of the input impulses are the same. In addition, it is found that field line resonances (FLRs) occur at certain L-shell regions of the earth's magneto-sphere after the impact of different positive-negative impulse pairs, which appear to be related to the duration of the impulses and the time interval between the sequential impulses. Another result is that the energy from the solar wind could be transported deeper into the inner magnetosphere by an impulse pair than by a single pulse impact. The results presented in this paper could help us to better understand how energy is transported from solar wind to the earth's magnetosphere via ULF waves. Also, these results provide some new clues to understanding of how energetic particles in the inner magnetosphere response to different kinds of solar wind pressure impulse impacts including inter-planetary shocks.展开更多
In this paper, nonlinear transverse vibrations of axially moving Timoshenko beams with two free ends are investigated. The governing equations and the associated boundary conditions are derived by the extended Hamilto...In this paper, nonlinear transverse vibrations of axially moving Timoshenko beams with two free ends are investigated. The governing equations and the associated boundary conditions are derived by the extended Hamilton principle. The method of multiple scales is applied to analyze the nonlinear partial differential equation. The natural frequencies and modes are investigated by performing the complex mode approach. The effect of natural frequencies with the stiffness and the axial speeds are numerically demonstrated. The solvability conditions are established for the cases of without and with 3:1 internal resonances. The relationships between the nonlinear frequencies and the initial amplitudes at different axial speeds and the nonlinear coefficients are showed for the case of without internal resonances. The effects of the related coefficients are demonstrated for the case of 3:1 internal resonances.展开更多
As a natural biaxial hyperbolic material, α-phase molybdenum trioxide(α-MoO_(3)) exhibits dielectric and metallic properties in the plane, rendering it an exceptional candidate for polarization-dependent devices. In...As a natural biaxial hyperbolic material, α-phase molybdenum trioxide(α-MoO_(3)) exhibits dielectric and metallic properties in the plane, rendering it an exceptional candidate for polarization-dependent devices. In this work, we design a lithography-free polarization-dependent absorber consisting of an α-MoO_(3)film, a germanium layer, and a silver substrate. The results show that a narrowband absorption of up to 0.99 is achieved at a wavelength of 12.2 μm for transverse magnetic polarization. In contrast, the absorption is only 0.06 at this wavelength for transverse electric polarization. This remarkable polarization-dependent absorption performance is attributed to the coupling of epsilon-near-zero modes and Fabry-Perot resonances, which is confirmed by the electric field and power dissipation density distributions. Furthermore, strong polarization-dependent performance could also be achieved when the crystal axis of α-MoO_(3)is rotated in the out-of-plane. This work demonstrates that in-plane anisotropic α-MoO_(3)has the potential for designing high polarization-dependent devices.展开更多
The photoproduction of the f1(1285)meson off the proton target is investigated within an effective Lagrangian approach.The t-channelρ-andω-exchange diagrams,u-channel nucleon-exchange diagram,generalized contact ter...The photoproduction of the f1(1285)meson off the proton target is investigated within an effective Lagrangian approach.The t-channelρ-andω-exchange diagrams,u-channel nucleon-exchange diagram,generalized contact term,and s-channel pole diagrams of the nucleon and a minimal number of nucleon resonances are taken into account in constructing the reaction amplitudes to describe the experimental data.Three different models,that is,the Feynman,Regge,and interpolated Regge models,are employed,where the t-channel reaction amplitudes are constructed in Feynman,Regge,and interpolated Regge types,respectively.The results show that neither the Feynman model with two nucleon resonances nor the interpolated Regge model with one nucleon resonance can satisfactorily reproduce the available data forγp→f1(1285)p.Nevertheless,in the Regge model,when any one of the N(1990)7/2^(+),N(2000)5/2^(+),N(2040)3/2^(+),N(2060)5/2^(-),N(2100)1/2^(+),N(2120)3/2^(-),N(2190)7/2^(-),N(2300)1/2^(+),and N(2570)5/2^(-)resonances is considered,the data can be well described.The resulting resonance parameters are consistent with those advocated in the Particle Data Group(PDG)review.Further analysis shows that,in the high-energy region,the peaks of γp→f1(1285)p differential cross sections at forward angles are dominated by the contributions from t-channelρ-andω-exchange diagrams,while in low-energy region,the s-channel pole diagrams of resonances also provide significant contributions to theγp→f1(1285)p cross sections.展开更多
Based on electron transport theory, the performance of kx and kr filtered thermoelectric refrigerators with two resonances are studied in this paper. The performance characteristic curves between the cooling rate and ...Based on electron transport theory, the performance of kx and kr filtered thermoelectric refrigerators with two resonances are studied in this paper. The performance characteristic curves between the cooling rate and the coefficient of performance are plotted by numerical calculation. It is shown that the maximum cooling rate of the thermoelectric refrigerator with two resonances increases but the maximum coefficient of performance decreases compared with those with one resonance. No matter which resonance mechanism is used (kx or kr filtered), the cooling rate and the performance coefficient of the kr filtered refrigerator are much better than those of the kx filtered one.展开更多
A refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and dual side rings resonators is proposed. The sensing properties are numerically simulated by t...A refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and dual side rings resonators is proposed. The sensing properties are numerically simulated by the finite element method (FEM). For the interaction of the narrow-band spectral response and the broadband spectral response caused by the side-coupled resonators and the rectangular resonator, respectively, the transmission spectra exhibit a sharp and asymmetric profile. Results are analyzed using the coupled-mode theory based on the transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift. Through the optimization of structural parameters, we achieve a theoretical value of the refractive index sensitivity (S) as high as 1160 nm/RIU, and the corresponding sensing resolution is 8.62 × 10 -5 RIU. In addition, the coupled MIM waveguide structure can be easily extended to other similar compact structures to realize the sensing task and integrated with other photonic devices at the chip scale. This work paves the way toward the sensitive nanometer scale refractive index sensor for design and application.展开更多
Both consciousness and quantum phenomenon are subjective and indeterministic. In this paper, we propose consciousness is a quantum phenomenon. A quantum theory of consciousness (QTOC) is presented based on a new inter...Both consciousness and quantum phenomenon are subjective and indeterministic. In this paper, we propose consciousness is a quantum phenomenon. A quantum theory of consciousness (QTOC) is presented based on a new interpretation of quantum physics. We show that this QTOC can address the mind and body problem, the hard problem of consciousness. It also provides a physics foundation and mathematical formulation to study consciousness and neural network. We demonstrate how to apply it to develop and extend various models of consciousness. We show the predictions from this theory about the existence of a universal quantum vibrational field and the large-scale, nearly instantaneous synchrony of brainwaves among different parts of brain, body, people, and objects. The correlation between Schumann Resonances and some brainwaves is explained. Recent progress in quantum information theory, especially regarding quantum entanglement and quantum error correction code, is applied to study memory and shed new light in neuroscience.展开更多
The research of cancer-specific resonances started with Raymond R. Rife’s controversial results. The intensive debate began on the topic, and various interpretations of the results deepened after his death. This them...The research of cancer-specific resonances started with Raymond R. Rife’s controversial results. The intensive debate began on the topic, and various interpretations of the results deepened after his death. This theme presently sparks desperate debates with extreme opinions, from the dangerous quackery to the brilliant discovery. A part of medical practices applies the resonance principle in various anticancer therapies and uses a variety of devices. Most medical experts refuse such “resonance therapies” due to their confidence in their quackery. I summarized some present problems and proposed a possible solution. My present article aims to discuss some aspects of the biological resonances, trying to clear some vague details of this subject and give a possible stochastic explanation of some resonances in cancer therapy. However, when considering the stochastic explanations of resonance frequencies, there are as many of these as there are enzymatic processes affecting the biological systems.展开更多
基金This project received funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.724306)the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)(No.231447078-TRR142).
文摘Free from phase-matching constraints,plasmonic metasurfaces have contributed significantly to the control of optical nonlinearity and enhancement of nonlinear generation efficiency by engineering subwavelength meta-atoms.However,high dissipative losses and inevitable thermal heating limit their applicability in nonlinear nanophotonics.All-dielectric metasurfaces,supporting both electric and magnetic Mie-type resonances in their nanostructures,have appeared as a promising alternative to nonlinear plasmonics.High-index dielectric nanostructures,allowing additional magnetic resonances,can induce magnetic nonlinear effects,which,along with electric nonlinearities,increase the nonlinear conversion efficiency.In addition,low dissipative losses and high damage thresholds provide an extra degree of freedom for operating at high pump intensities,resulting in a considerable enhancement of the nonlinear processes.We discuss the current state of the art in the intensely developing area of all-dielectric nonlinear nanostructures and metasurfaces,including the role of Mie modes,Fano resonances,and anapole moments for harmonic generation,wave mixing,and ultrafast optical switching.Furthermore,we review the recent progress in the nonlinear phase and wavefront control using all-dielectric metasurfaces.We discuss techniques to realize alldielectric metasurfaces for multifunctional applications and generation of second-order nonlinear processes from complementary metal–oxide–semiconductor-compatible materials.
基金supported by the National Natural Science Foundation of China(Grants Nos.11404153,11175076,11135002,and 11405077)the Fundamental Research Funds for the Central Universities of China(Grant Nos.lzujbky-2014-10,lzujbky-2014-13,and lzujbky-2014-14)
文摘We theoretically investigate high-order harmonic generation in a two-color multi-cycle inhomogeneous field combined with a 27th harmonic pulse. By considering a bowtie-shaped gold nanostructure, the spatiotemporal profiles of enhanced plasmonic fields are obtained by solving the Maxwell equation using finite-domain time-difference method. Based on quantum-mechanical and classical models, the effect of 27th harmonic pulse, temporal profile of enhanced plasmonic field and inhomogeneity on supercontinuum generation are analyzed and discussed. As a result, broadband supercontinuum can be generated from our approach with optimized gap size of nanostructure. Moreover, these results are not sensitively dependent on the relative phase in the two-color field.
基金the National Natural Science Foundation of China (Grant Nos. 40425004 and 40528005)the Major State Basic Research De-velopment Program of China (973 Program) (Grant No. 2006CB806305)
文摘A three-dimensional numerical model is employed to investigate ULF waves ex-cited by the sudden impulse (SI) of the solar wind dynamic pressure interacting with a dipole magnetosphere. We focus on the solar wind-magnetosphere energy coupling through ULF waves, and the influences of the SI spectrum on the cavity mode structure and the energy deposition due to field line resonances (FLRs) in the magnetosphere. The numerical results show that for a given SI lasting for 1 min with amplitude of 50 mV/m impinging on the subsolar magnetopause, the total ULF energy transported from the solar wind to the magnetosphere is about the magni-tude of 1014 J. The efficiency of the solar wind energy input is around 1%, which depends little on the location of the magnetopause in the model. It is also found that the energy of the cavity mode is confined in the region near the magnetopause, whereas, the energy of the toroidal mode may be distributed among a few specific L-shells. With a given size of the model magnetosphere and plasma density distri-bution, it is shown that the fundamental eigenfrequency of the cavity mode and the central locations of the FLRs do not vary noticeably with the power spectrum of the SI. It is worth noting that the spectrum of the SI affects the excitation of higher harmonics of the global cavity mode. The broader the bandwidth of the SI is, the higher harmonics of cavity mode could be excited. Meanwhile, the corresponding FLRs regions are broadened at the same time, which implies that the global cavity modes and toroidal modes can resonate on more magnetic L-shells when more harmonics of the global cavity modes appear.
基金supported by the National Natural Science Foundation of China(Grant Nos.51576207,51306206)the Hubei Provincial Natural Science Foundation of China(Grant No.2017CFB498)
文摘A theoretical model for irreversible double resonance ESE(energy selective electron) device with phonon induced bypass heat leakage which is operating as heat engine system is proposed. The thermodynamic performance is optimized and the impacts of heat leakage and structure parameters of the electron system on its performance are discussed in detail by using FTT(finite time thermodynamics). Moreover, performances of the ESE system with multiple optimization objective functions, including power output, thermal efficiency, ecological function and efficient power, are explored by numerical examples. New optimal performance regions and the selection plans of optimization objective functions of the ESE system are obtained. It reveals that the characteristic of power versus efficiency behave as loop-shaped curves in spite of the heat leakage which will always decrease the efficiency of the electron engine. By properly choosing the design parameters, the ESE engine can be designed to operate at optimal conditions according to different design purpose. The preferred design area should be located between the optimal effective power condition and the optimal ecological function condition.
基金supported by National Natural Science Foundation of China (Grant No 10765004)Science and Technology Foundation of Jiangxi Education Bureau,China
文摘This paper establishes the energy selective electron (ESE) engine with double resonances as a refrigerator in one dimensional (1D) system. It consists of two infinitely large electron reservoirs with different temperatures and chemical potentials, and they are perfectly thermally insulated from each other and interaction only via a double 'idealized energy filter' whose widths are all finite. Taking advantage of the density of state and Fermi distribution in the 1D system, the heat flux into each reservoir may then be calculated. Moreover, the coefficient of performance may be derived from the expressions for the heat flux into the hot and cold reservoirs. The performance characteristic curves are plotted by numerical analysis. The influences of the resonances widths, the energy position of resonance and the space of two resonances on performance of the ESE refrigerator are discussed. The results obtained here have theoretical significance for the understanding of thermodynamic performance of the micro-nano devices.
基金This work was supported by the National Key Research and Development Program of China(No.2017YFB1104300)National Natural Science Foundation of China(No.51672150)Tsinghua University Initiative Scientific Research Program.
文摘Although Fe3O4 particles have exhibited excellent microwave absorbing capacity and widely used in practical application due to the synergistic effect of magnetic loss and dielectric loss,their applications are still limited for the required high mass fraction in absorbers.To overcome this problem,the development of Fe3O4 materials with low dimensional structures is necessary.In this study,the shape anisotropic Fe3O4 nanotubes(NTs)with low mass ratios were applied to realize efficient microwave absorption.The NTs with different aspect ratios were prepared through facile electrospinning followed by two-step thermal treatments and mechanical shearing.The cross-linked nanotubular structure enabled the absorbers to have much higher electrical conductivity,multiple scattering,polarization relaxation and better anti-reflection surface,while the shape anisotropic NTs maintained significant multiple resonances with stronger coercivity.These all were beneficial to microwave absorption with enhanced dielectric loss,magnetic loss and sterling impedance matching.Results showed that the absorber with 33.3 wt.%of short Fe3O4 NTs had minimum reflection loss of-58.36 dB at 17.32 GHz with a thickness of 1.27 mm,and had the maximum effective absorbing bandwidth(EAB)of 5.27 GHz when the thickness was 1.53 mm.The absorber with 14.3 wt.%of long Fe3O4 NTs presented the widest EAB in certain radar band with attenuated 80.75%X band and 85%Ku band energy bellow-10 dB at the thickness of 2.65 and 1.53 mm,respectively.This study provided an approach for the development of shape anisotropic magnetic absorbing materials,and broadened their practical applications as magnetic absorbers.
基金This work was supported by the National Natural Science Foundation of China(Award No.62175099)Guangdong Basic and Applied Basic Research Foundation(Award No.2023A1515011085)+1 种基金Stable Support Program for Higher Education Institutions from Shenzhen Science,Technology&Innovation Commission(Award No.20220815151149004)Global recruitment program of young experts of China,and startup funding of Southern University of Science and Technology.The authors acknowledge the assistance of SUSTech Core Research Facilities and thank Yao Wang for helpful discussions on fabrication.
文摘Bound states in the continuum(BICs)have exhibited extraordinary properties in photonics for enhanced light-matter interactions that enable appealing applications in nonlinear optics,biosensors,and ultrafast optical switches.The most common strategy to apply BICs in a metasurface is by breaking symmetry of resonators in the uniform array that leaks the otherwise uncoupled mode to free space and exhibits an inverse quadratic relationship between quality factor(Q)and asymmetry.Here,we propose a scheme to further reduce scattering losses and improve the robustness of symmetry-protected BICs by decreasing the radiation density with a hybrid BIC lattice.We observe a significant increase of radiative Q in the hybrid lattice compared to the uniform lattice with a factor larger than 14.6.In the hybrid BIC lattice,modes are transferred toГpoint inherited from high symmetric X,Y,and M points in the Brillouin zone that reveal as multiple Fano resonances in the far field and would find applications in hyperspectral sensing.This work initiates a novel and generalized path toward reducing scattering losses and improving the robustness of BICs in terms of lattice engineering that would release the rigid requirements of fabrication accuracy and benefit applications of photonics and optoelectronic devices.
基金This work was supported by the National Natural Science Foundation of China under grant nos.91123004,61390503,61475186 and 91023041,and XDB07020200by the Technical Talent Program of the Chinese Academy of Sciences.
文摘The application of three-dimensional(3D)plasmonic nanostructures as metamaterials(MMs),nano-antennas,and other devices faces challenges in producing metallic nanostructures with easily definable orientations,sophisticated shapes,and smooth surfaces that are operational in the optical regime and beyond.Here,we demonstrate that complex 3D nanostructures can be readily achieved with focused-ion-beam irradiation-induced folding and examine the optical characteristics of plasmonic“nanograter”structures that are composed of free-standing Au films.These 3D nanostructures exhibit interesting 3D hybridization in current flows and exhibit unusual and well-scalable Fano resonances at wavelengths ranging from 1.6 to 6.4 mm.Upon the introduction of liquids of various refractive indices to the structures,a strong dependence of the Fano resonance is observed,with spectral sensitivities of 1400 nm and 2040 nm per refractive index unit under figures of merit of 35.0 and 12.5,respectively,for low-order and high-order resonance in the near-infrared region.This work indicates the exciting,increasing relevance of similarly constructed 3D free-standing nanostructures in the research and development of photonics and MMs.
基金Supported by the National Natural Science Foundation of China (Grant No. 40831061)
文摘The sources of ultra low frequency (ULF) waves in the magnetosphere are generally believed to be either the external solar wind perturbations or the internal plasma instabilities. When a sudden impulse of the solar wind dynamic pressure impinges on the magnetopause, ULF waves might be excited and thus the solar wind energy is transported into the earth's magnetosphere. In this paper, we study the ULF waves excited by different kinds of sudden solar wind pressure impulses through an MHD simulation. We primarily focus on the responses of the earth's magnetosphere to positive/negative impulses of solar wind dynamic pressure, and positive-negative impulse pairs. The simulation results show that the ULF waves excited by positive and negative impulse have the same amplitude and frequency, with 180° difference in phase, if the amplitude and durations of the input impulses are the same. In addition, it is found that field line resonances (FLRs) occur at certain L-shell regions of the earth's magneto-sphere after the impact of different positive-negative impulse pairs, which appear to be related to the duration of the impulses and the time interval between the sequential impulses. Another result is that the energy from the solar wind could be transported deeper into the inner magnetosphere by an impulse pair than by a single pulse impact. The results presented in this paper could help us to better understand how energy is transported from solar wind to the earth's magnetosphere via ULF waves. Also, these results provide some new clues to understanding of how energetic particles in the inner magnetosphere response to different kinds of solar wind pressure impulse impacts including inter-planetary shocks.
基金supported by the National Outstanding Young Scientists Foundation of China (Grant No. 10725209)the National Natural Science Foundation of China (Grant No. 90816001)+3 种基金Shanghai Subject Chief Scientist Project (Grant No. 09XD1401700)Innovation Foundation for Graduates of Shanghai University (Grant No. A.16-0401-08-005)Shanghai Leading Academic Discipline Project (Grant No. S30106)the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0844)
文摘In this paper, nonlinear transverse vibrations of axially moving Timoshenko beams with two free ends are investigated. The governing equations and the associated boundary conditions are derived by the extended Hamilton principle. The method of multiple scales is applied to analyze the nonlinear partial differential equation. The natural frequencies and modes are investigated by performing the complex mode approach. The effect of natural frequencies with the stiffness and the axial speeds are numerically demonstrated. The solvability conditions are established for the cases of without and with 3:1 internal resonances. The relationships between the nonlinear frequencies and the initial amplitudes at different axial speeds and the nonlinear coefficients are showed for the case of without internal resonances. The effects of the related coefficients are demonstrated for the case of 3:1 internal resonances.
基金supported by the National Natural Science Foundation of China (Grant No. 52106099)Shandong Provincial Natural Science Foundation (Grant No. ZR2022YQ57)+1 种基金Taishan Scholars ProgramBasic and Applied Basic Research Fund Project of Guangdong Province (Grant No. 2019A1515111178)。
文摘As a natural biaxial hyperbolic material, α-phase molybdenum trioxide(α-MoO_(3)) exhibits dielectric and metallic properties in the plane, rendering it an exceptional candidate for polarization-dependent devices. In this work, we design a lithography-free polarization-dependent absorber consisting of an α-MoO_(3)film, a germanium layer, and a silver substrate. The results show that a narrowband absorption of up to 0.99 is achieved at a wavelength of 12.2 μm for transverse magnetic polarization. In contrast, the absorption is only 0.06 at this wavelength for transverse electric polarization. This remarkable polarization-dependent absorption performance is attributed to the coupling of epsilon-near-zero modes and Fabry-Perot resonances, which is confirmed by the electric field and power dissipation density distributions. Furthermore, strong polarization-dependent performance could also be achieved when the crystal axis of α-MoO_(3)is rotated in the out-of-plane. This work demonstrates that in-plane anisotropic α-MoO_(3)has the potential for designing high polarization-dependent devices.
基金Partially supported by the National Natural Science Foundation of China(12175240,12147153,11635009,12305097,12305137)the Fundamental Research Funds for the Central Universitiesthe China Postdoctoral Science Foundation(2021M693141,2021M693142)。
文摘The photoproduction of the f1(1285)meson off the proton target is investigated within an effective Lagrangian approach.The t-channelρ-andω-exchange diagrams,u-channel nucleon-exchange diagram,generalized contact term,and s-channel pole diagrams of the nucleon and a minimal number of nucleon resonances are taken into account in constructing the reaction amplitudes to describe the experimental data.Three different models,that is,the Feynman,Regge,and interpolated Regge models,are employed,where the t-channel reaction amplitudes are constructed in Feynman,Regge,and interpolated Regge types,respectively.The results show that neither the Feynman model with two nucleon resonances nor the interpolated Regge model with one nucleon resonance can satisfactorily reproduce the available data forγp→f1(1285)p.Nevertheless,in the Regge model,when any one of the N(1990)7/2^(+),N(2000)5/2^(+),N(2040)3/2^(+),N(2060)5/2^(-),N(2100)1/2^(+),N(2120)3/2^(-),N(2190)7/2^(-),N(2300)1/2^(+),and N(2570)5/2^(-)resonances is considered,the data can be well described.The resulting resonance parameters are consistent with those advocated in the Particle Data Group(PDG)review.Further analysis shows that,in the high-energy region,the peaks of γp→f1(1285)p differential cross sections at forward angles are dominated by the contributions from t-channelρ-andω-exchange diagrams,while in low-energy region,the s-channel pole diagrams of resonances also provide significant contributions to theγp→f1(1285)p cross sections.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10765004 and 11065008)
文摘Based on electron transport theory, the performance of kx and kr filtered thermoelectric refrigerators with two resonances are studied in this paper. The performance characteristic curves between the cooling rate and the coefficient of performance are plotted by numerical calculation. It is shown that the maximum cooling rate of the thermoelectric refrigerator with two resonances increases but the maximum coefficient of performance decreases compared with those with one resonance. No matter which resonance mechanism is used (kx or kr filtered), the cooling rate and the performance coefficient of the kr filtered refrigerator are much better than those of the kx filtered one.
基金The authors thank Xiangxian WANG from the School of Science, Lanzhou University of Technology, Lanzhou, China for their discussions to this research. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61367005 and 74011119) and the Natural Science Foundation of Gansu Province (Grant No. 17JR5RA078).
文摘A refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and dual side rings resonators is proposed. The sensing properties are numerically simulated by the finite element method (FEM). For the interaction of the narrow-band spectral response and the broadband spectral response caused by the side-coupled resonators and the rectangular resonator, respectively, the transmission spectra exhibit a sharp and asymmetric profile. Results are analyzed using the coupled-mode theory based on the transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift. Through the optimization of structural parameters, we achieve a theoretical value of the refractive index sensitivity (S) as high as 1160 nm/RIU, and the corresponding sensing resolution is 8.62 × 10 -5 RIU. In addition, the coupled MIM waveguide structure can be easily extended to other similar compact structures to realize the sensing task and integrated with other photonic devices at the chip scale. This work paves the way toward the sensitive nanometer scale refractive index sensor for design and application.
文摘Both consciousness and quantum phenomenon are subjective and indeterministic. In this paper, we propose consciousness is a quantum phenomenon. A quantum theory of consciousness (QTOC) is presented based on a new interpretation of quantum physics. We show that this QTOC can address the mind and body problem, the hard problem of consciousness. It also provides a physics foundation and mathematical formulation to study consciousness and neural network. We demonstrate how to apply it to develop and extend various models of consciousness. We show the predictions from this theory about the existence of a universal quantum vibrational field and the large-scale, nearly instantaneous synchrony of brainwaves among different parts of brain, body, people, and objects. The correlation between Schumann Resonances and some brainwaves is explained. Recent progress in quantum information theory, especially regarding quantum entanglement and quantum error correction code, is applied to study memory and shed new light in neuroscience.
文摘The research of cancer-specific resonances started with Raymond R. Rife’s controversial results. The intensive debate began on the topic, and various interpretations of the results deepened after his death. This theme presently sparks desperate debates with extreme opinions, from the dangerous quackery to the brilliant discovery. A part of medical practices applies the resonance principle in various anticancer therapies and uses a variety of devices. Most medical experts refuse such “resonance therapies” due to their confidence in their quackery. I summarized some present problems and proposed a possible solution. My present article aims to discuss some aspects of the biological resonances, trying to clear some vague details of this subject and give a possible stochastic explanation of some resonances in cancer therapy. However, when considering the stochastic explanations of resonance frequencies, there are as many of these as there are enzymatic processes affecting the biological systems.