Androgen receptor (AR) gene has been extensively studied in diverse clinical conditions. In addition to the point mutations, trinucleotide repeat (CAG and GGN) length polymorphisms have been an additional subject ...Androgen receptor (AR) gene has been extensively studied in diverse clinical conditions. In addition to the point mutations, trinucleotide repeat (CAG and GGN) length polymorphisms have been an additional subject of interest and controversy among geneticists. The polymorphic variations in triplet repeats have been associated with a number of disorders, but at the same time contradictory findings have also been reported. Further, studies on the same disorder in different populations have generated different results. Therefore, combined analysis or review of the published studies has been of much value to extract information on the significance of variations in the gene in various clinical conditions. AR genetics has been reviewed extensively but until now review articles have focused on individual clinical categories such as androgen insensitivity, male infertility, prostate cancer, and so on. We have made the first effort to review most the aspects of AR genetics. The impact of androgens in various disorders and polymorphic variations in the AR gene is the main focus of this review. Additionally, the correlations observed in various studies have been discussed in the light of in vitro evidences available for the effect of AR gene variations on the action of androgens.展开更多
Prostate cancer (PCa) is the second most common malignancy among men in the world. Castration-resistant prostate cancer (CRPC) is the lethal form of the disease, which develops upon resistance to first line androg...Prostate cancer (PCa) is the second most common malignancy among men in the world. Castration-resistant prostate cancer (CRPC) is the lethal form of the disease, which develops upon resistance to first line androgen deprivation therapy (ADT). Emerging evidence demonstrates a key role for the PI3K-AKT-mTOR signaling axis in the development and maintenance of CRPC. This pathway, which is deregulated in the majority of advanced PCas, serves as a critical nexus for the integration of growth signals with downstream cellular processes such as protein synthesis, proliferation, survival, metabolism and differentiation, thus providing mechanisms for cancer cells to overcome the stress associated with androgen deprivation. Furthermore, preclinical studies have elucidated a direct connection between the PI3K-AKT-mTOR and androgen receptor (AR) signaling axes, revealing a dynamic interplay between these pathways during the development of ADT resistance. Thus, there is a clear rationale for the continued clinical development of a number of novel inhibitors of the PI3K pathway, which offer the potential of blocking CRPC growth and survival. In this review, we will explore the relevance of the PI3K-AKT-mTOR pathway in PCa progression and castration resistance in order to inform the clinical development of specific pathway inhibitors in advanced PCa. In addition, we will highlight current deficiencies in our clinical knowledge, most notably the need for biomarkers that can accurately predict for response to PI3K pathway inhibitors.展开更多
Aim: To elucidate effects and mechanisms of emodin in prostate cancer cells. Methods: Viability of emodin-treated LNCaP cells and PC-3 cells was measured by MTT assay. Following emodin treatments, DNA fragmentation ...Aim: To elucidate effects and mechanisms of emodin in prostate cancer cells. Methods: Viability of emodin-treated LNCaP cells and PC-3 cells was measured by MTT assay. Following emodin treatments, DNA fragmentation was assayed by agarose gel electrophoresis. Apoptosis rate and the expression of Fas and FasL were assayed by flow cytometric analysis. The mRNA expression levels of androgen receptor (AR), prostate-specific antigen (PSA), p53, p21, Bcl-2, Bax, caspase-3, -8, -9 and Fas were detected by RT-PCR, and the protein expression levels of AR, p53 and p21 were detected by Western blot analysis. Results: In contrast to PC-3, emodin caused a marked increase in apoptosis and a decrease in cell proliferation in LNCaP cells. The expression of AR and PSA was decreased and the expression of p53 and p21 was increased as the emodin concentrations were increased. In the same time, emodin induced apoptosis of LNCaP cells through the upregulation of caspase-3 and -9, as well as the increase of Bax/Bcl-2 ratio. However, it did not involve modulation of Fas or caspase-8 protein expression. Conclusion: In prostate cancer cell line, LNCaP, emodin inhibites the proliferation by AR and p53-p21 pathways, and induces apoptosis via the mitochondrial pathway.展开更多
The striking gender disparity observed in the incidence of hepatocellutar carcinoma (HCC) suggests an important role of sex hormones in HCC pathogenesis. Though the studies began as early as in 1980s, the precise ro...The striking gender disparity observed in the incidence of hepatocellutar carcinoma (HCC) suggests an important role of sex hormones in HCC pathogenesis. Though the studies began as early as in 1980s, the precise role of sex hormones and the significance of their receptors in HCC still remain poorly understood and perhaps contribute to current controversies about the potential use of hormonal therapy in HCC. A comprehensive review of the existing literature revealed several shortcomings associated with the studies on estrogen receptor (ER) and androgen receptor (AR) in normal liver and HCC. These shortcomings include the use of less sensitive receptor ligand binding assays and immunohistochemistry studies for ERα alone until 1996 when ERβ isoform was identified. The animal models of HCC utilized for studies were primarily based on chemical-induced hepatocarcinogenesis with less similarity to virus-induced HCC pathogenesis. However, recent in vitro studies in hepatoma cells provide newer insights for hormonal regulation of key cellular processes including interaction of ER and AR with viral proteins. In light of the above facts, there is an urgent need for a detailed investigation of sex hormones and their receptors in normal liver and HCC. In this review, we systematically present the information currently available on androgens, estrogens and their receptors in normal liver and HCC obtained from in vitro, in vivo experimental models and clinical studies. This information will direct future basic and clinical research to bridge the gap in knowledge to explore the therapeutic potential of hormonal therapy in HCC.展开更多
This study was designed to investigate the association between immune inflammation and androgen receptor (AR) expression in benign prostatic hyperplasia (BPH). We retrospectively analyzed 105 prostatectomy specime...This study was designed to investigate the association between immune inflammation and androgen receptor (AR) expression in benign prostatic hyperplasia (BPH). We retrospectively analyzed 105 prostatectomy specimens. An immune inflammation score for each specimen was defined by combining three immunohistochemical markers (CD4, CD8 and CD20). The immunohistochemical markers were CD4 and CD8 for T lymphocytes, CD20 for B lymphocytes and AR antibody for the AR in BPH samples. Rates of CD4, CD8, CD20 and AR expression in BPH were 20 (19.0%), 21 (20.0%), 101 (96.2%) and 48 (45.7%), respectively. Total prostate volume (TPV) was higher in the immune inflammation group than in the non-immune inflammation group (62.7 ml vs. 49.2 ml, t=-2.482, P〈0.05). Patients in the immune inflammation group had a higher serum prostate-specific antigen (PSA) than those in the non-inflammation group (7.5 ng m1-1 vs. 5.4 ng m1-1, t=-2.771, P〈0.05). Specifically, the immune inflammation group showed a higher rate of AR expression than the non-inflammation group (56.1% vs. 28.2%, χ2=7.665, P〈0.05). Our study revealed a strong association between immune inflammation and TPV, serum PSA and AR expression in BPH tissue. Prostate hyperplasia caused by an immune inflammatory process may contribute to BPH progression over time. Therefore, the inflammatory response involved in BPH may be a prime therapeutic target.展开更多
The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse mod...The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immune and hemopoetic system, bone, muscle, adipose tissue, the prostate and the brain. This review focuses on the insights that have been gained into human androgen deficiency through the use of ARKO mouse models at each of these sites of action, and highlights the strengths and limitations of these Cre-loxP mouse models that should be considered to ensure accurate interpretation of the phenotype.展开更多
Normal and neoplastic growth of the prostate gland are dependent on androgen receptor (AR) expression and function. Androgenic activation of the AR, in association with its coregulatory factors, is the classical pat...Normal and neoplastic growth of the prostate gland are dependent on androgen receptor (AR) expression and function. Androgenic activation of the AR, in association with its coregulatory factors, is the classical pathway that leads to transcriptional activity of AR target genes. Alternatively, cytoplasmic signaling crosstalk of AR by growth factors, neurotrophic peptides, cytokines or nonandrogenic hormones may have important roles in prostate carcinogenesis and in metastatic or androgen-independent (AI) progression of the disease. In addition, cross-modulation by various nuclear transcription factors acting through basal transcriptional machinery could positively or negatively affect the AR or AR target genes expression and activity. Androgen ablation leads to an initial favorable response in a significant number of patients; however, almost invariably patients relapse with an aggressive form of the disease known as castration-resistant or hormone-refractory prostate cancer (PCa). Understanding critical molecular events that lead PCa cells to resist androgen-deprivation therapy is essential in developing successful treatments for hormone-refractory disease. In a significant number of hormone-refractory patients, the AR is overexpressed, mutated or genomically amplified. These genetic alterations maintain an active presence for a highly sensitive AR, which is responsive to androgens, antiandrogens or nonandrogenic hormones and collectively confer a selective growth advantage to PCa cells. This review provides a brief synopsis of the AR structure, AR coregulators, posttranslational modifications of AR, duality of AR function in prostate epithelial and stromal cells, AR-dependent signaling, genetic changes in the form of somatic and germline mutations and their known functional significance in PCa cells and tissues.展开更多
Despite great progress in the detection and treatment of prostate cancer, this disease remains an incredible health and economic burden. Although androgen receptor (AR) signaling plays a key role in the development ...Despite great progress in the detection and treatment of prostate cancer, this disease remains an incredible health and economic burden. Although androgen receptor (AR) signaling plays a key role in the development and progression of prostate cancer, aberrations in other molecular pathways also contribute to the disease, making it essential to identify and develop drugs against novel targets, both for the prevention and treatment of prostate cancer. One promising target is the peroxisome proliferator-activated receptor gamma (PPARy) protein. PPARy was originally thought to act as a tumor suppressor in prostate cells because agonist ligands inhibited the growth of prostate cancer cells; however, additional studies found that PPARy agonists inhibit cell growth independent of PPARy. Furthermore, PPARy expression increases with cancer grade/stage, which would suggest that it is not a tumor suppressor but instead that PPARy activity may play a role in prostate cancer development and/or progression. Indeed, two new studies, taking vastly different, unbiased approaches, have identified PPARy as a target in prostate cancer and suggest that PPARy inhibition might be useful in prostate cancer prevention and treatment. These findings could lead to a new therapeutic weapon in the fight against prostate cancer.展开更多
文摘Androgen receptor (AR) gene has been extensively studied in diverse clinical conditions. In addition to the point mutations, trinucleotide repeat (CAG and GGN) length polymorphisms have been an additional subject of interest and controversy among geneticists. The polymorphic variations in triplet repeats have been associated with a number of disorders, but at the same time contradictory findings have also been reported. Further, studies on the same disorder in different populations have generated different results. Therefore, combined analysis or review of the published studies has been of much value to extract information on the significance of variations in the gene in various clinical conditions. AR genetics has been reviewed extensively but until now review articles have focused on individual clinical categories such as androgen insensitivity, male infertility, prostate cancer, and so on. We have made the first effort to review most the aspects of AR genetics. The impact of androgens in various disorders and polymorphic variations in the AR gene is the main focus of this review. Additionally, the correlations observed in various studies have been discussed in the light of in vitro evidences available for the effect of AR gene variations on the action of androgens.
文摘Prostate cancer (PCa) is the second most common malignancy among men in the world. Castration-resistant prostate cancer (CRPC) is the lethal form of the disease, which develops upon resistance to first line androgen deprivation therapy (ADT). Emerging evidence demonstrates a key role for the PI3K-AKT-mTOR signaling axis in the development and maintenance of CRPC. This pathway, which is deregulated in the majority of advanced PCas, serves as a critical nexus for the integration of growth signals with downstream cellular processes such as protein synthesis, proliferation, survival, metabolism and differentiation, thus providing mechanisms for cancer cells to overcome the stress associated with androgen deprivation. Furthermore, preclinical studies have elucidated a direct connection between the PI3K-AKT-mTOR and androgen receptor (AR) signaling axes, revealing a dynamic interplay between these pathways during the development of ADT resistance. Thus, there is a clear rationale for the continued clinical development of a number of novel inhibitors of the PI3K pathway, which offer the potential of blocking CRPC growth and survival. In this review, we will explore the relevance of the PI3K-AKT-mTOR pathway in PCa progression and castration resistance in order to inform the clinical development of specific pathway inhibitors in advanced PCa. In addition, we will highlight current deficiencies in our clinical knowledge, most notably the need for biomarkers that can accurately predict for response to PI3K pathway inhibitors.
基金This study was supported by the Natural Science Foundation of Shandong Province (No. Y2005C29) and the National Natural Science Foundation of China (No. 30470820 and No. 30670581).
文摘Aim: To elucidate effects and mechanisms of emodin in prostate cancer cells. Methods: Viability of emodin-treated LNCaP cells and PC-3 cells was measured by MTT assay. Following emodin treatments, DNA fragmentation was assayed by agarose gel electrophoresis. Apoptosis rate and the expression of Fas and FasL were assayed by flow cytometric analysis. The mRNA expression levels of androgen receptor (AR), prostate-specific antigen (PSA), p53, p21, Bcl-2, Bax, caspase-3, -8, -9 and Fas were detected by RT-PCR, and the protein expression levels of AR, p53 and p21 were detected by Western blot analysis. Results: In contrast to PC-3, emodin caused a marked increase in apoptosis and a decrease in cell proliferation in LNCaP cells. The expression of AR and PSA was decreased and the expression of p53 and p21 was increased as the emodin concentrations were increased. In the same time, emodin induced apoptosis of LNCaP cells through the upregulation of caspase-3 and -9, as well as the increase of Bax/Bcl-2 ratio. However, it did not involve modulation of Fas or caspase-8 protein expression. Conclusion: In prostate cancer cell line, LNCaP, emodin inhibites the proliferation by AR and p53-p21 pathways, and induces apoptosis via the mitochondrial pathway.
文摘The striking gender disparity observed in the incidence of hepatocellutar carcinoma (HCC) suggests an important role of sex hormones in HCC pathogenesis. Though the studies began as early as in 1980s, the precise role of sex hormones and the significance of their receptors in HCC still remain poorly understood and perhaps contribute to current controversies about the potential use of hormonal therapy in HCC. A comprehensive review of the existing literature revealed several shortcomings associated with the studies on estrogen receptor (ER) and androgen receptor (AR) in normal liver and HCC. These shortcomings include the use of less sensitive receptor ligand binding assays and immunohistochemistry studies for ERα alone until 1996 when ERβ isoform was identified. The animal models of HCC utilized for studies were primarily based on chemical-induced hepatocarcinogenesis with less similarity to virus-induced HCC pathogenesis. However, recent in vitro studies in hepatoma cells provide newer insights for hormonal regulation of key cellular processes including interaction of ER and AR with viral proteins. In light of the above facts, there is an urgent need for a detailed investigation of sex hormones and their receptors in normal liver and HCC. In this review, we systematically present the information currently available on androgens, estrogens and their receptors in normal liver and HCC obtained from in vitro, in vivo experimental models and clinical studies. This information will direct future basic and clinical research to bridge the gap in knowledge to explore the therapeutic potential of hormonal therapy in HCC.
文摘This study was designed to investigate the association between immune inflammation and androgen receptor (AR) expression in benign prostatic hyperplasia (BPH). We retrospectively analyzed 105 prostatectomy specimens. An immune inflammation score for each specimen was defined by combining three immunohistochemical markers (CD4, CD8 and CD20). The immunohistochemical markers were CD4 and CD8 for T lymphocytes, CD20 for B lymphocytes and AR antibody for the AR in BPH samples. Rates of CD4, CD8, CD20 and AR expression in BPH were 20 (19.0%), 21 (20.0%), 101 (96.2%) and 48 (45.7%), respectively. Total prostate volume (TPV) was higher in the immune inflammation group than in the non-immune inflammation group (62.7 ml vs. 49.2 ml, t=-2.482, P〈0.05). Patients in the immune inflammation group had a higher serum prostate-specific antigen (PSA) than those in the non-inflammation group (7.5 ng m1-1 vs. 5.4 ng m1-1, t=-2.771, P〈0.05). Specifically, the immune inflammation group showed a higher rate of AR expression than the non-inflammation group (56.1% vs. 28.2%, χ2=7.665, P〈0.05). Our study revealed a strong association between immune inflammation and TPV, serum PSA and AR expression in BPH tissue. Prostate hyperplasia caused by an immune inflammatory process may contribute to BPH progression over time. Therefore, the inflammatory response involved in BPH may be a prime therapeutic target.
文摘The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immune and hemopoetic system, bone, muscle, adipose tissue, the prostate and the brain. This review focuses on the insights that have been gained into human androgen deficiency through the use of ARKO mouse models at each of these sites of action, and highlights the strengths and limitations of these Cre-loxP mouse models that should be considered to ensure accurate interpretation of the phenotype.
文摘Normal and neoplastic growth of the prostate gland are dependent on androgen receptor (AR) expression and function. Androgenic activation of the AR, in association with its coregulatory factors, is the classical pathway that leads to transcriptional activity of AR target genes. Alternatively, cytoplasmic signaling crosstalk of AR by growth factors, neurotrophic peptides, cytokines or nonandrogenic hormones may have important roles in prostate carcinogenesis and in metastatic or androgen-independent (AI) progression of the disease. In addition, cross-modulation by various nuclear transcription factors acting through basal transcriptional machinery could positively or negatively affect the AR or AR target genes expression and activity. Androgen ablation leads to an initial favorable response in a significant number of patients; however, almost invariably patients relapse with an aggressive form of the disease known as castration-resistant or hormone-refractory prostate cancer (PCa). Understanding critical molecular events that lead PCa cells to resist androgen-deprivation therapy is essential in developing successful treatments for hormone-refractory disease. In a significant number of hormone-refractory patients, the AR is overexpressed, mutated or genomically amplified. These genetic alterations maintain an active presence for a highly sensitive AR, which is responsive to androgens, antiandrogens or nonandrogenic hormones and collectively confer a selective growth advantage to PCa cells. This review provides a brief synopsis of the AR structure, AR coregulators, posttranslational modifications of AR, duality of AR function in prostate epithelial and stromal cells, AR-dependent signaling, genetic changes in the form of somatic and germline mutations and their known functional significance in PCa cells and tissues.
文摘Despite great progress in the detection and treatment of prostate cancer, this disease remains an incredible health and economic burden. Although androgen receptor (AR) signaling plays a key role in the development and progression of prostate cancer, aberrations in other molecular pathways also contribute to the disease, making it essential to identify and develop drugs against novel targets, both for the prevention and treatment of prostate cancer. One promising target is the peroxisome proliferator-activated receptor gamma (PPARy) protein. PPARy was originally thought to act as a tumor suppressor in prostate cells because agonist ligands inhibited the growth of prostate cancer cells; however, additional studies found that PPARy agonists inhibit cell growth independent of PPARy. Furthermore, PPARy expression increases with cancer grade/stage, which would suggest that it is not a tumor suppressor but instead that PPARy activity may play a role in prostate cancer development and/or progression. Indeed, two new studies, taking vastly different, unbiased approaches, have identified PPARy as a target in prostate cancer and suggest that PPARy inhibition might be useful in prostate cancer prevention and treatment. These findings could lead to a new therapeutic weapon in the fight against prostate cancer.