It is a new attempt to extend the differential quadrature method(DQM) to stability analysis of the straight and curved centerlinepipes conveying fluid. Emphasis is placed on the study of theinfluences of several param...It is a new attempt to extend the differential quadrature method(DQM) to stability analysis of the straight and curved centerlinepipes conveying fluid. Emphasis is placed on the study of theinfluences of several parameters on the critical flow velocity.Compared to other methods, this method can more easily deal with thepipe with spring support at its boundaries and asks for much lesscomputing effort while giving ac- ceptable precision in the numericalresults.展开更多
We propose a novel numerical approach for delay differential equations with vanishing proportional delays based on spectral methods. A Legendre-collocation method is employed to obtain highly accurate numerical approx...We propose a novel numerical approach for delay differential equations with vanishing proportional delays based on spectral methods. A Legendre-collocation method is employed to obtain highly accurate numerical approximations to the exact solution. It is proved theoretically and demonstrated numerically that the proposed method converges exponentially provided that the data in the are smooth. given pantograph delay differential equation展开更多
This paper investigates nonlinear dynamical behaviors in transverse motion of an axially accelerating viscoelastic beam via the differential quadrature method. The governing equation, a nonlinear partial-differential ...This paper investigates nonlinear dynamical behaviors in transverse motion of an axially accelerating viscoelastic beam via the differential quadrature method. The governing equation, a nonlinear partial-differential equation, is derived from the viscoelastic constitution relation using the material derivative. The differential quadrature scheme is developed to solve numerically the governing equation. Based on the numerical solutions, the nonlinear dynamical behaviors are identified by use of the Poincare map and the phase portrait. The bifurcation diagrams are presented in the case that the mean axial speed and the amplitude of the speed fluctuation are respectively varied while other parameters are fixed. The Lyapunov exponent and the initial value sensitivity of the different points of the beam, calculated from the time series based on the numerical solutions, are used to indicate periodic motions or chaotic motions occurring in the transverse motion of the axially accelerating viscoelastic beam.展开更多
By introducing orthogonal frequency division multiplexing (OFDM) technology, a visible light communication (VLC) system using a 5~5 white LED array is studied in this paper. The OFDM transmitter and receiver are m...By introducing orthogonal frequency division multiplexing (OFDM) technology, a visible light communication (VLC) system using a 5~5 white LED array is studied in this paper. The OFDM transmitter and receiver are modeled through MATLAB/Simulink tool. The electrical-optical-electrical (EOE) response of the VLC channel, which is also the re- sponse of the detector, is derived based on Lambert's lighting model. Then the modeling on the overall OFDM/VLC system is established by combining the above three models together. The effects of the factors which include the digital modulation, Reed-Solomon (RS) coding, pilot form, pilot ratio (PR) and communication distance on the bit error rate (BER) of the system are discussed. The results show that through the use of RS coding, block pilot, quad- rate phase shift keying (QPSK) modulation and a suitable pilot ratio about 1/3, under the communication rate about 550 kbit/s, the BER can be dropped to below 10^-5, and the communication distance can reach 0.9 m.展开更多
The nonlinear responses of planar motions of a fluid-conveying pipe embedded in nonlinear elastic foundations are investigated via the differential quadrature method discretization (DQMD) of the governing partial di...The nonlinear responses of planar motions of a fluid-conveying pipe embedded in nonlinear elastic foundations are investigated via the differential quadrature method discretization (DQMD) of the governing partial differential equation. For the analytical model, the effect of the nonlinear elastic foundation is modeled by a nonlinear restraining force. By using an iterative algorithm, a set of ordinary differential dynamical equations derived from the equation of motion of the system are solved numerically and then the bifurcations are analyzed. The numerical results, in which the existence of chaos is demonstrated, are presented in the form of phase portraits of the oscillations. The intermittency transition to chaos has been found to arise.展开更多
In this paper, the author discusses some singular integral operators, singular quadrature operators and discretization matrices associated with singular integral equations with Cauchy kernels, and obtain some useful p...In this paper, the author discusses some singular integral operators, singular quadrature operators and discretization matrices associated with singular integral equations with Cauchy kernels, and obtain some useful properties for them. These results improve both the classical theory of singular integral equation and the classical theory of singular quadrature.展开更多
A novel numerical procedure, which realizes the stochastic analysis with dimensional reduction integration (DRI), C-type Gram-Charlier (CGC) series, and finite element (FE) model, is proposed to assess the proba...A novel numerical procedure, which realizes the stochastic analysis with dimensional reduction integration (DRI), C-type Gram-Charlier (CGC) series, and finite element (FE) model, is proposed to assess the probability distribution of structural per- formance. From the relationship between the weighting function of orthogonal polynomial and probability density function (PDF) of random variable, the numerical integration formulas are derived for moment computation. Then, distribution of structural uncertainty response can be approximated by the CGC series with the calculated moments. Three engineering appli- cations for the distribution of, the maximum displacement of a ten-bar planer truss, natural frequency of an auto frame, and Von-Mises stress of a bending pipe, are employed to illustrate the computational efficiency and accuracy of the proposed methodology. As compared with plain Monte Carlo simulation (MCS), the method can obtain the accurate distribution of structural performance. Especially at the tail region of cumulative distribution function (CDF), results have shown the satisfy- ing estimators for small probabilities, say, Pc [104, 10-3]. That implies the method could be trusted for structural failure prob- ability prediction. As the computational efficiency is concerned, the procedure could save more than two orders of computational resources as compared with the direct numerical integration (NI) and MCS. Furthermore, realization of the procedure does not require computing the performance gradient or Hessian matrix with respect to random variables, or reshaping the finite element matrix as other stochastic finite element (SFE) codes. Therefore, it should be an efficient and reliable routine for uncertainty structural analysis.展开更多
Nonlinear models of transverse vibration of axially moving beams are computationally investigated. A partial-differential equation is derived from the governing equation of coupled planar motion by omit- ting its long...Nonlinear models of transverse vibration of axially moving beams are computationally investigated. A partial-differential equation is derived from the governing equation of coupled planar motion by omit- ting its longitudinal terms. The model can be reduced to an integro-partial-differential equation by av- eraging the beam disturbed tension. Numerical schemes are respectively presented for the governing equations of coupled planar and the two governing equations of transverse motion via the finite dif- ference method and differential quadrature method under the fixed boundary and the simple support boundary. A steel beam and a copper beam are treated as examples to demonstrate the deviations of the solutions to the two transverse equations from the solution to the coupled equation. The numerical results indicate that the differences increase with the amplitude of vibration and the axial speed. Both models yield almost the same precision results for small amplitude vibration and the inte- gro-partial-differential equation gives better results for large amplitude vibration.展开更多
Two-dimensional thermoelasticity analysis of functionally graded thick beams is presented using the state space method coupled with the technique of differential quadrature. Material properties vary continuously and s...Two-dimensional thermoelasticity analysis of functionally graded thick beams is presented using the state space method coupled with the technique of differential quadrature. Material properties vary continuously and smoothly through the beam thickness, leading to variable coefficients in the state equation derived from the elasticity equations. Approximate laminate model is employed to translate the state equation into the one with constant coefficients in each layer. To avoid numerical instability, joint coupling matrices are introduced according to the continuity conditions at interfaces in the approximate model. The differential quadrature procedure is applied to discretizing the beam in the axial direction to make easy the treatment of arbitrary end conditions. A simply-supported beam with exponentially varying material properties is considered to validate the present method. Numerical examples are performed to investigate the influences of relative parameters.展开更多
To improve spectral utilization of communication system, a novel nonorthogonal pulse shape modulation (NPSM) based on prolate spheroidal wave function (PSWF) is proposed. The modulation employs nonorthogonal PSWF ...To improve spectral utilization of communication system, a novel nonorthogonal pulse shape modulation (NPSM) based on prolate spheroidal wave function (PSWF) is proposed. The modulation employs nonorthogonal PSWF pulses to transmit information and it shows a higher capacity than traditional orthogonal modulations. The NPSM capacity under the constraint of finite input alphabet, which is determined by parameters of PSWF pulse, is derived. An optimiza- tion model for maximal capacity of NPSM is constructed and an exhaustive self-adapting gradient search algorithm for the model is proposed. A practical NPSM scheme with the maximal capacity is obtained by this search algorithm and it is proved to be superior to orthogonal signaling in the capacity. Our theoretical analysis is validated by numerical simulations and practical tests, and the results show that NPSM outperforms orthogonal modulations in the capacity and has a lower Peak-to-Average Power Ratio.展开更多
A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigate...A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.展开更多
The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficu...The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficulty arises when the algorithm is used for non-homogeneous dynamic systems, due to the inverse matrix calculation and the simulation accuracy of the applied loading. By combining the Gaussian quadrature method and state space theory with the calculation technique of matrix exponential function in the precise time step integration method, a new modified precise time step integration method (e.g., an algorithm with an arbitrary order of accuracy) is proposed. In the new method, no inverse matrix calculation or simulation of the applied loading is needed, and the computing efficiency is improved. In particular, the proposed method is independent of the quality of the matrix H. If the matrix H is singular or nearly singular, the advantage of the method is remarkable. The numerical stability of the proposed algorithm is discussed and a numerical example is given to demonstrate the validity and efficiency of the algorithm.展开更多
Presented in this paper is a precise investigation of the effect of surface stress on the vibration characteristics and instability of fluid-conveying nanoscale pipes.To this end,the nanoscale pipe is modeled as a Tim...Presented in this paper is a precise investigation of the effect of surface stress on the vibration characteristics and instability of fluid-conveying nanoscale pipes.To this end,the nanoscale pipe is modeled as a Timoshenko nanobeam.The equations of motion of the nanoscale pipe are obtained based on Hamilton's principle and the Gurtin-Murdoch continuum elasticity incorporating the surface stress effect.Afterwards,the generalized differential quadrature method is employed to discretize the governing equations and associated boundary conditions.To what extent important parameters such as the thickness,material and surface stress modulus,residual surface stress,surface density,and boundary conditions influence the natural frequency of nanoscale pipes and the critical velocity of fluid is discussed.展开更多
In this study, coupled equations of the motion of a particle in a fluid forced vortex were investigated using the differential transformation method (DTM) with the Pad6 approximation and the differential quadrature ...In this study, coupled equations of the motion of a particle in a fluid forced vortex were investigated using the differential transformation method (DTM) with the Pad6 approximation and the differential quadrature method (DO_M). The significant contribution of the work is the introduction of two new, fast and efficient solutions for a spherical particle in a forced vortex that are improvements over the previous numerical results in the literature. These methods represent approximations with a high degree of accuracy and minimal computational effort for studying the particle motion in a fluid forced vortex. In addition, the velocity profiles (angular and radial) and the position trajectory of a particle in a fluid forced vortex are described in the current study.展开更多
The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates The integrals involved in the variational description of a thin plate are evaluated by a...The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates The integrals involved in the variational description of a thin plate are evaluated by an efficient numerical scheme and the par- tial derivatives at the integration sampling points are then approximated using differential quadrature analogs. Neither the grid pattern nor the number of nodes is fixed, being adjustable according to convergence need. The C~ continuity conditions char- acterizing the thin plate theory are discussed and the robustness of the weak form quadrature element for thin plates against shape distortion is examined. Examples are presented and comparisons with analytical solutions and the results of the finite element method are made to demonstrate the convergence and computational efficiency of the weak form quadrature element method. It is shown that the present formulation is applicable to thin plates with varying thickness as well as uniform plates.展开更多
基金National Key Project of China (No.PD9521907)the National Science Foundation of China (No.19872025).
文摘It is a new attempt to extend the differential quadrature method(DQM) to stability analysis of the straight and curved centerlinepipes conveying fluid. Emphasis is placed on the study of theinfluences of several parameters on the critical flow velocity.Compared to other methods, this method can more easily deal with thepipe with spring support at its boundaries and asks for much lesscomputing effort while giving ac- ceptable precision in the numericalresults.
基金The research of HB was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and by the Research Grants Council of Hong KongThe research of TT was supported by Hong Kong Baptist University,the Research Grants Council of Hong Kong and he was supported in part by the Chinese Academy of Sciences while visiting its Institute of Computational Mathematics.
文摘We propose a novel numerical approach for delay differential equations with vanishing proportional delays based on spectral methods. A Legendre-collocation method is employed to obtain highly accurate numerical approximations to the exact solution. It is proved theoretically and demonstrated numerically that the proposed method converges exponentially provided that the data in the are smooth. given pantograph delay differential equation
基金supported by the National Outstanding Young Scientists Fund of China(No.10725209)the National Natural Science Foundation of China(No.10672092)+1 种基金Shanghai Municipal Education Commission Scientific Research Project(No.07ZZ07)Shanghai Leading Academic Discipline Project(No.S30106)
文摘This paper investigates nonlinear dynamical behaviors in transverse motion of an axially accelerating viscoelastic beam via the differential quadrature method. The governing equation, a nonlinear partial-differential equation, is derived from the viscoelastic constitution relation using the material derivative. The differential quadrature scheme is developed to solve numerically the governing equation. Based on the numerical solutions, the nonlinear dynamical behaviors are identified by use of the Poincare map and the phase portrait. The bifurcation diagrams are presented in the case that the mean axial speed and the amplitude of the speed fluctuation are respectively varied while other parameters are fixed. The Lyapunov exponent and the initial value sensitivity of the different points of the beam, calculated from the time series based on the numerical solutions, are used to indicate periodic motions or chaotic motions occurring in the transverse motion of the axially accelerating viscoelastic beam.
基金supported by the Innovation Fund for Technology Based Firms of Changchun of China (No.10ZC04)
文摘By introducing orthogonal frequency division multiplexing (OFDM) technology, a visible light communication (VLC) system using a 5~5 white LED array is studied in this paper. The OFDM transmitter and receiver are modeled through MATLAB/Simulink tool. The electrical-optical-electrical (EOE) response of the VLC channel, which is also the re- sponse of the detector, is derived based on Lambert's lighting model. Then the modeling on the overall OFDM/VLC system is established by combining the above three models together. The effects of the factors which include the digital modulation, Reed-Solomon (RS) coding, pilot form, pilot ratio (PR) and communication distance on the bit error rate (BER) of the system are discussed. The results show that through the use of RS coding, block pilot, quad- rate phase shift keying (QPSK) modulation and a suitable pilot ratio about 1/3, under the communication rate about 550 kbit/s, the BER can be dropped to below 10^-5, and the communication distance can reach 0.9 m.
基金the National Natural Science Foundation of China(No.10772071)the Scientific Research Foundation of HUST(No.2006Q003B).
文摘The nonlinear responses of planar motions of a fluid-conveying pipe embedded in nonlinear elastic foundations are investigated via the differential quadrature method discretization (DQMD) of the governing partial differential equation. For the analytical model, the effect of the nonlinear elastic foundation is modeled by a nonlinear restraining force. By using an iterative algorithm, a set of ordinary differential dynamical equations derived from the equation of motion of the system are solved numerically and then the bifurcations are analyzed. The numerical results, in which the existence of chaos is demonstrated, are presented in the form of phase portraits of the oscillations. The intermittency transition to chaos has been found to arise.
文摘In this paper, the author discusses some singular integral operators, singular quadrature operators and discretization matrices associated with singular integral equations with Cauchy kernels, and obtain some useful properties for them. These results improve both the classical theory of singular integral equation and the classical theory of singular quadrature.
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the University Network of Excellence in Nuclear Engineering (UNENE) through an Industrial Research Chair program,"Risk-Based Life Cycle Management of Engineering Systems",at the University of Waterloo
文摘A novel numerical procedure, which realizes the stochastic analysis with dimensional reduction integration (DRI), C-type Gram-Charlier (CGC) series, and finite element (FE) model, is proposed to assess the probability distribution of structural per- formance. From the relationship between the weighting function of orthogonal polynomial and probability density function (PDF) of random variable, the numerical integration formulas are derived for moment computation. Then, distribution of structural uncertainty response can be approximated by the CGC series with the calculated moments. Three engineering appli- cations for the distribution of, the maximum displacement of a ten-bar planer truss, natural frequency of an auto frame, and Von-Mises stress of a bending pipe, are employed to illustrate the computational efficiency and accuracy of the proposed methodology. As compared with plain Monte Carlo simulation (MCS), the method can obtain the accurate distribution of structural performance. Especially at the tail region of cumulative distribution function (CDF), results have shown the satisfy- ing estimators for small probabilities, say, Pc [104, 10-3]. That implies the method could be trusted for structural failure prob- ability prediction. As the computational efficiency is concerned, the procedure could save more than two orders of computational resources as compared with the direct numerical integration (NI) and MCS. Furthermore, realization of the procedure does not require computing the performance gradient or Hessian matrix with respect to random variables, or reshaping the finite element matrix as other stochastic finite element (SFE) codes. Therefore, it should be an efficient and reliable routine for uncertainty structural analysis.
基金Supported by the National Outstanding Young Scientists Fund of China (Grant No. 10725209)the National Natural Science Foundation of China (Grant No. 10672092)+1 种基金Shanghai Municipal Education Commission Scientific Research Project (Grant No. 07ZZ07)Shanghai Leading Academic Discipline Project (Grant No. Y0103)
文摘Nonlinear models of transverse vibration of axially moving beams are computationally investigated. A partial-differential equation is derived from the governing equation of coupled planar motion by omit- ting its longitudinal terms. The model can be reduced to an integro-partial-differential equation by av- eraging the beam disturbed tension. Numerical schemes are respectively presented for the governing equations of coupled planar and the two governing equations of transverse motion via the finite dif- ference method and differential quadrature method under the fixed boundary and the simple support boundary. A steel beam and a copper beam are treated as examples to demonstrate the deviations of the solutions to the two transverse equations from the solution to the coupled equation. The numerical results indicate that the differences increase with the amplitude of vibration and the axial speed. Both models yield almost the same precision results for small amplitude vibration and the inte- gro-partial-differential equation gives better results for large amplitude vibration.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 10432030 and 10372088).
文摘Two-dimensional thermoelasticity analysis of functionally graded thick beams is presented using the state space method coupled with the technique of differential quadrature. Material properties vary continuously and smoothly through the beam thickness, leading to variable coefficients in the state equation derived from the elasticity equations. Approximate laminate model is employed to translate the state equation into the one with constant coefficients in each layer. To avoid numerical instability, joint coupling matrices are introduced according to the continuity conditions at interfaces in the approximate model. The differential quadrature procedure is applied to discretizing the beam in the axial direction to make easy the treatment of arbitrary end conditions. A simply-supported beam with exponentially varying material properties is considered to validate the present method. Numerical examples are performed to investigate the influences of relative parameters.
基金supported by the National Natural Science Foundation of China(No.60772056)the Special Foundation Project of Taishan Scholar of Shandong Province(ts20081130)
文摘To improve spectral utilization of communication system, a novel nonorthogonal pulse shape modulation (NPSM) based on prolate spheroidal wave function (PSWF) is proposed. The modulation employs nonorthogonal PSWF pulses to transmit information and it shows a higher capacity than traditional orthogonal modulations. The NPSM capacity under the constraint of finite input alphabet, which is determined by parameters of PSWF pulse, is derived. An optimiza- tion model for maximal capacity of NPSM is constructed and an exhaustive self-adapting gradient search algorithm for the model is proposed. A practical NPSM scheme with the maximal capacity is obtained by this search algorithm and it is proved to be superior to orthogonal signaling in the capacity. Our theoretical analysis is validated by numerical simulations and practical tests, and the results show that NPSM outperforms orthogonal modulations in the capacity and has a lower Peak-to-Average Power Ratio.
文摘A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.
基金financial support from Hunan Provincial Natura1 Science Foundation of China,Grant Number:02JJY2085,for this study
文摘The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficulty arises when the algorithm is used for non-homogeneous dynamic systems, due to the inverse matrix calculation and the simulation accuracy of the applied loading. By combining the Gaussian quadrature method and state space theory with the calculation technique of matrix exponential function in the precise time step integration method, a new modified precise time step integration method (e.g., an algorithm with an arbitrary order of accuracy) is proposed. In the new method, no inverse matrix calculation or simulation of the applied loading is needed, and the computing efficiency is improved. In particular, the proposed method is independent of the quality of the matrix H. If the matrix H is singular or nearly singular, the advantage of the method is remarkable. The numerical stability of the proposed algorithm is discussed and a numerical example is given to demonstrate the validity and efficiency of the algorithm.
文摘Presented in this paper is a precise investigation of the effect of surface stress on the vibration characteristics and instability of fluid-conveying nanoscale pipes.To this end,the nanoscale pipe is modeled as a Timoshenko nanobeam.The equations of motion of the nanoscale pipe are obtained based on Hamilton's principle and the Gurtin-Murdoch continuum elasticity incorporating the surface stress effect.Afterwards,the generalized differential quadrature method is employed to discretize the governing equations and associated boundary conditions.To what extent important parameters such as the thickness,material and surface stress modulus,residual surface stress,surface density,and boundary conditions influence the natural frequency of nanoscale pipes and the critical velocity of fluid is discussed.
文摘In this study, coupled equations of the motion of a particle in a fluid forced vortex were investigated using the differential transformation method (DTM) with the Pad6 approximation and the differential quadrature method (DO_M). The significant contribution of the work is the introduction of two new, fast and efficient solutions for a spherical particle in a forced vortex that are improvements over the previous numerical results in the literature. These methods represent approximations with a high degree of accuracy and minimal computational effort for studying the particle motion in a fluid forced vortex. In addition, the velocity profiles (angular and radial) and the position trajectory of a particle in a fluid forced vortex are described in the current study.
基金supported by the National Natural Science Foundation of China (Grant Nos.51178247 and 50778104)the National High Technology Research and Development Program of China (Grant No.2009AA04Z401)
文摘The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates The integrals involved in the variational description of a thin plate are evaluated by an efficient numerical scheme and the par- tial derivatives at the integration sampling points are then approximated using differential quadrature analogs. Neither the grid pattern nor the number of nodes is fixed, being adjustable according to convergence need. The C~ continuity conditions char- acterizing the thin plate theory are discussed and the robustness of the weak form quadrature element for thin plates against shape distortion is examined. Examples are presented and comparisons with analytical solutions and the results of the finite element method are made to demonstrate the convergence and computational efficiency of the weak form quadrature element method. It is shown that the present formulation is applicable to thin plates with varying thickness as well as uniform plates.