Taking the intensity-dependent coupling between atoms and cavity mode into account, we investigate a system consisting of N homogeneously broadened two-level atoms interacting with the field inside a single-mode Fabry...Taking the intensity-dependent coupling between atoms and cavity mode into account, we investigate a system consisting of N homogeneously broadened two-level atoms interacting with the field inside a single-mode Fabry- Perot cavity containing a nonlinear Kerr-like medium. We derive the steady-state bistable behaviour of the system, and further analyse in details the influence of several critical parameters on the bistable behaviour.展开更多
The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applyi...The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applying the Stephan-Boltzmann law with the use of the Unruh radiation temperature at the surface of a black hole to calculate the power of radiation of the black hole is conceptually unphysical. This is because the Unruh radiation temperature results from the gravitational field of the object rather than from the thermal motion of matter of the object, so that the Stephan-Boltzmann law is not applicable. This paper shows that the emission power of Unruh radiation from a gravitational object should be calculated in terms of the rate of increase of the total Unruh radiation energy outside the object. The result obtained from this study indicates that a gravitational object can emit Unruh radiation when the variation of its mass and radius satisfies an inequality of dM/M > 1.25dR/R. For a black hole, the emission of Unruh radiation does not occur unless it can loose its mass (dM < 0). The emission power of Unruh radiation is only an extremely tiny part of the rate of mass-energy loss if the black hole is not extremely micro-sized. This study turns down our traditional understanding of the Hawking radiation and thermodynamics of black holes.展开更多
While wormholes are just as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. To allow for the possibility of interstellar travel, a macroscopic...While wormholes are just as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. To allow for the possibility of interstellar travel, a macroscopic wormhole would need to maintain sufficiently low radial tidal forces. It is proposed in this paper that the assumption of zero tidal forces, i.e., the limiting case, is sufficient for overcoming the restrictions from quantum field theory. The feasibility of this approach is subsequently discussed by 1) introducing the additional conditions needed to ensure that the radial tidal forces can indeed be sufficiently low and 2) by viewing traversable wormholes as emergent phenomena, thereby increasing the likelihood of their existence.展开更多
The main problem of quantum mechanics is to elucidate why the probability density is the modulus square of wave function. For the purpose of solving this problem, we explored the possibility of deducing the fundamenta...The main problem of quantum mechanics is to elucidate why the probability density is the modulus square of wave function. For the purpose of solving this problem, we explored the possibility of deducing the fundamental equation of quantum mechanics by starting with the probability density. To do so, it is necessary to formulate a new theory of quantum mechanics distinguished from the previous ones. Our investigation shows that it is possible to construct quantum mechanics in phase space as an alternative autonomous formulation and such a possibility enables us to study quantum mechanics by starting with the probability density rather than the wave function. This direction of research is contrary to configuration-space formulation of quantum mechanics starting with the wave function. Our work leads to a full understanding of the wave function as the both mathematically and physically sufficient representation of quantum-mechanical state which supplements information on quantum state given solely by the probability density with phase information on quantum state. The final result of our work is that quantum mechanics in phase space satisfactorily elucidates the relation between the wave function and the probability density by using the consistent procedure starting with the probability density, thus corroborating the ontological interpretation of the wave function and withdrawing a main assumption of quantum mechanics.展开更多
Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in ...Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in the wider sense of the word which we tackle via fractal nano technologies leading to some design proposals for a nano Casimir-dark energy reactor.展开更多
Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix...Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix elements from a dual fermion-boson Lagrangian. In this formalism, the fermion binding energies are compensated by boson energies, indicating that particles can be generated out of the vacuum. This yields quantitative solutions for various mesons ω (0.78 GeV) - Υ (9.46 GeV) and all leptons e, μ and τ, with uncertainties in the extracted properties of less than 1‰. For transparency, a Web-page with the address htpps://h2909473.stratoserver.net has been constructed, where all calculations can be run on line and also the underlying fortran source code can be inspected.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10575040 and 90503010.
文摘Taking the intensity-dependent coupling between atoms and cavity mode into account, we investigate a system consisting of N homogeneously broadened two-level atoms interacting with the field inside a single-mode Fabry- Perot cavity containing a nonlinear Kerr-like medium. We derive the steady-state bistable behaviour of the system, and further analyse in details the influence of several critical parameters on the bistable behaviour.
文摘The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applying the Stephan-Boltzmann law with the use of the Unruh radiation temperature at the surface of a black hole to calculate the power of radiation of the black hole is conceptually unphysical. This is because the Unruh radiation temperature results from the gravitational field of the object rather than from the thermal motion of matter of the object, so that the Stephan-Boltzmann law is not applicable. This paper shows that the emission power of Unruh radiation from a gravitational object should be calculated in terms of the rate of increase of the total Unruh radiation energy outside the object. The result obtained from this study indicates that a gravitational object can emit Unruh radiation when the variation of its mass and radius satisfies an inequality of dM/M > 1.25dR/R. For a black hole, the emission of Unruh radiation does not occur unless it can loose its mass (dM < 0). The emission power of Unruh radiation is only an extremely tiny part of the rate of mass-energy loss if the black hole is not extremely micro-sized. This study turns down our traditional understanding of the Hawking radiation and thermodynamics of black holes.
文摘While wormholes are just as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. To allow for the possibility of interstellar travel, a macroscopic wormhole would need to maintain sufficiently low radial tidal forces. It is proposed in this paper that the assumption of zero tidal forces, i.e., the limiting case, is sufficient for overcoming the restrictions from quantum field theory. The feasibility of this approach is subsequently discussed by 1) introducing the additional conditions needed to ensure that the radial tidal forces can indeed be sufficiently low and 2) by viewing traversable wormholes as emergent phenomena, thereby increasing the likelihood of their existence.
文摘The main problem of quantum mechanics is to elucidate why the probability density is the modulus square of wave function. For the purpose of solving this problem, we explored the possibility of deducing the fundamental equation of quantum mechanics by starting with the probability density. To do so, it is necessary to formulate a new theory of quantum mechanics distinguished from the previous ones. Our investigation shows that it is possible to construct quantum mechanics in phase space as an alternative autonomous formulation and such a possibility enables us to study quantum mechanics by starting with the probability density rather than the wave function. This direction of research is contrary to configuration-space formulation of quantum mechanics starting with the wave function. Our work leads to a full understanding of the wave function as the both mathematically and physically sufficient representation of quantum-mechanical state which supplements information on quantum state given solely by the probability density with phase information on quantum state. The final result of our work is that quantum mechanics in phase space satisfactorily elucidates the relation between the wave function and the probability density by using the consistent procedure starting with the probability density, thus corroborating the ontological interpretation of the wave function and withdrawing a main assumption of quantum mechanics.
文摘Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in the wider sense of the word which we tackle via fractal nano technologies leading to some design proposals for a nano Casimir-dark energy reactor.
文摘Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix elements from a dual fermion-boson Lagrangian. In this formalism, the fermion binding energies are compensated by boson energies, indicating that particles can be generated out of the vacuum. This yields quantitative solutions for various mesons ω (0.78 GeV) - Υ (9.46 GeV) and all leptons e, μ and τ, with uncertainties in the extracted properties of less than 1‰. For transparency, a Web-page with the address htpps://h2909473.stratoserver.net has been constructed, where all calculations can be run on line and also the underlying fortran source code can be inspected.