Millimeter-wave(mmWave)technology has been well studied for both outdoor long-distance transmission and indoor short-range communication.In the recently emerging fiber-to-the-room(FTTR)architecture in the home network...Millimeter-wave(mmWave)technology has been well studied for both outdoor long-distance transmission and indoor short-range communication.In the recently emerging fiber-to-the-room(FTTR)architecture in the home network of the fifth generation fixed networks(F5G),mmWave technology can be cascaded well to a new optical network terminal in the room to enable extremely high data rate communication(i.e.,>10 Gb/s).In the FTTR+mmWave scenario,the rapid degradation of the mmWave signal in long-distance transmission and the significant loss against wall penetration are no longer the bottlenecks for real application.Moreover,the surrounding walls of every room provide excellent isolation to avoid interference and guarantee security.This paper provides insights and analysis for the new FTTR+mmWave architecture to improve the customer experience in future broadband services such as immersive audiovisual videos.展开更多
The Q-band position of tin-centered 5, 9, 14, 18, 23, 27, 32, 36-octabutoxy 2, 3- phthalocyanine(SnNc(OBu)8) exhibits dramatic red-shift as mixed with SnCl2 in CH2Cl2.
文摘Millimeter-wave(mmWave)technology has been well studied for both outdoor long-distance transmission and indoor short-range communication.In the recently emerging fiber-to-the-room(FTTR)architecture in the home network of the fifth generation fixed networks(F5G),mmWave technology can be cascaded well to a new optical network terminal in the room to enable extremely high data rate communication(i.e.,>10 Gb/s).In the FTTR+mmWave scenario,the rapid degradation of the mmWave signal in long-distance transmission and the significant loss against wall penetration are no longer the bottlenecks for real application.Moreover,the surrounding walls of every room provide excellent isolation to avoid interference and guarantee security.This paper provides insights and analysis for the new FTTR+mmWave architecture to improve the customer experience in future broadband services such as immersive audiovisual videos.
文摘The Q-band position of tin-centered 5, 9, 14, 18, 23, 27, 32, 36-octabutoxy 2, 3- phthalocyanine(SnNc(OBu)8) exhibits dramatic red-shift as mixed with SnCl2 in CH2Cl2.