This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave mo...This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.展开更多
A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydrauli...A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydraulic power take-off system, which suits for the floating wave energy devices, includes hydraulic system and power generation system. The hydraulic control system uses a special“self-hydraulic control system”to control hydraulic system to release or save energy under the maximum and the minimum pressures. The maximum pressure is enhanced to 23 MPa, the minimum to 9 MPa. Quite a few experiments show that the recent hydraulic system is evidently improved in efficiency and reliability than our previous one, that is expected to be great significant in the research and development of our prototype about wave energy conversion.展开更多
In tomato, the NBARC-LRR resistance (R) protein Prf acts in concert with the Pto or Fen kinase to determine immunity against Pseudomonas syringae pv. tomato (Pst). Prf-mediated defense signaling is initiated by th...In tomato, the NBARC-LRR resistance (R) protein Prf acts in concert with the Pto or Fen kinase to determine immunity against Pseudomonas syringae pv. tomato (Pst). Prf-mediated defense signaling is initiated by the recognition of two sequence-unrelated Pst-secreted effector proteins, AvrPto and AvrPtoB, by tomato Pto or Fen. Prf detects these inter- actions and activates signaling leading to host defense responses including localized programmed cell death (PCD) that is associated with the arrest of Pst growth. We found that Prf variants with single amino acid substitutions at D1416 in the IHD motif (isoleucine-histidine-aspartic acid) in the NBARC domain cause effector-independent PCD when transiently expressed in leaves of Nicotiana benthamiana, suggesting D1416 plays an important role in activation of Prf. The N-ter- minal region of Prf (NPrf) and the LRR domain are required for this autoactive Prf cell death signaling but dispensable for accumulation of the PrfD1416V protein. Significantly, co-expression of the Prf LRR but not NPrf, with PrfD1416v, AvrPto/Pto, AvrPtoB/Pto, an autoactive form of Pro (PtoY207D), or Fen completely suppresses PCD. However, the Prf LRR does not in- terfere with PCD caused by Rpi-blblD475v a distinct R protein-mediated PCD signaling event, or that caused by overex- pression of MAPKKKα, a protein acting downstream of Prf. Furthermore, we found the PrfD1416V protein is unable to accumulate in plant cells when co-expressed with the Prf LRR domain, likely explaining the cell death suppression. The mechanism for the LRR-induced degradation of PrfD1416V is unknown but may involve interference in the intramo- lecular interactions of Prf or to binding of the unattached LRR to other host proteins that are needed for Prf stability.展开更多
本文基于AVISO(Archiving,Validation and Interpretation of Satellite Oceanographic data)1993-2015年间的海表面绝对动力高度数据,研究了台湾以东黑潮的低频变化特征,并探讨了影响其变化的机制。结果表明,台湾以东多年平均的黑潮流...本文基于AVISO(Archiving,Validation and Interpretation of Satellite Oceanographic data)1993-2015年间的海表面绝对动力高度数据,研究了台湾以东黑潮的低频变化特征,并探讨了影响其变化的机制。结果表明,台湾以东多年平均的黑潮流幅值约为136km,表层流量值约为7.75×10~4 m^2/s,对应的标准差分别为28km和2.14×10~4 m^2/s。台湾以东黑潮不仅具有显著的季节变化特征,还具有显著的年际变化特征。功率谱分析结果表明,台湾以东黑潮表层流量具有1a和2.8a的显著周期。空间上,台湾东南部黑潮的年际变化幅度比东北部强烈。相关性及合成分析结果表明,台湾以东黑潮的年际变化与PTO(Philippines-Taiwan Oscillation)之间存在显著的相关性。PTO年际震荡所导致的副热带逆流区反气旋式涡旋与气旋式涡旋的相对强度是影响台湾以东黑潮年际变化的主要动力因素。展开更多
The development of active yet stable catalysts for oxygen reduction reaction(ORR)is still a major issue for the extensive permeation of fuel cells into everyday technology.While nanostructured Pt catalysts are to date...The development of active yet stable catalysts for oxygen reduction reaction(ORR)is still a major issue for the extensive permeation of fuel cells into everyday technology.While nanostructured Pt catalysts are to date the best available systems in terms of activity,the same is not true for stability,particularly under operating conditions.In this work,Pt_(Х)Y alloy nanoparticles are proposed as active and durable electrocatalysts for ORR.Pt_(Х)Y nanoalloys are synthesized and further optimized by laser ablation in liquid followed by laser fragmentation in liquid.The novel integrated laser-assisted methodology succeeded in producing Pt_(Х)Y nanoparticles with the ideal size(<10 nm)of commercial Pt catalysts,yet resulting remarkably more active with E_(1/2)=0.943 V vs.RHE,specific activity=1095μA cm^(-2) and mass activity>1000 A g^(-1).At the same time,the nanoalloys are embedded in a fine Pt oxide matrix,which allows a greater stability of the catalyst than the commercial Pt reference,as directly verified on a gas diffusion electrode.展开更多
In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber...In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter's efficiency when considering specific conditions.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51205346 and 41206074)the National High Technology Research and Development Program of China(863 Program+3 种基金Grant No.2011AA050201)Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51221004)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY12E05017)Open Foundation of the State Key Laboratory of Fluid Power Transmission and Control(Grant No.GZKF-201311)
文摘This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.
基金supported by Marine Renewable Energy Funds Projects(Grant Nos.GHME2010GC01 and GHME2011BL06)
文摘A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydraulic power take-off system, which suits for the floating wave energy devices, includes hydraulic system and power generation system. The hydraulic control system uses a special“self-hydraulic control system”to control hydraulic system to release or save energy under the maximum and the minimum pressures. The maximum pressure is enhanced to 23 MPa, the minimum to 9 MPa. Quite a few experiments show that the recent hydraulic system is evidently improved in efficiency and reliability than our previous one, that is expected to be great significant in the research and development of our prototype about wave energy conversion.
基金the University of Idaho Startup funding to F.X.,the Knowledge Innovation Program of Chinese Academy of Sciences (KSCX2-EW-J-22) to X.M.,the National Science Fund for Distinguished Young Scholars (No.30825030) to Y.L.,and the National Science Foundation grant (DBI-0605059) to G.B.M
文摘In tomato, the NBARC-LRR resistance (R) protein Prf acts in concert with the Pto or Fen kinase to determine immunity against Pseudomonas syringae pv. tomato (Pst). Prf-mediated defense signaling is initiated by the recognition of two sequence-unrelated Pst-secreted effector proteins, AvrPto and AvrPtoB, by tomato Pto or Fen. Prf detects these inter- actions and activates signaling leading to host defense responses including localized programmed cell death (PCD) that is associated with the arrest of Pst growth. We found that Prf variants with single amino acid substitutions at D1416 in the IHD motif (isoleucine-histidine-aspartic acid) in the NBARC domain cause effector-independent PCD when transiently expressed in leaves of Nicotiana benthamiana, suggesting D1416 plays an important role in activation of Prf. The N-ter- minal region of Prf (NPrf) and the LRR domain are required for this autoactive Prf cell death signaling but dispensable for accumulation of the PrfD1416V protein. Significantly, co-expression of the Prf LRR but not NPrf, with PrfD1416v, AvrPto/Pto, AvrPtoB/Pto, an autoactive form of Pro (PtoY207D), or Fen completely suppresses PCD. However, the Prf LRR does not in- terfere with PCD caused by Rpi-blblD475v a distinct R protein-mediated PCD signaling event, or that caused by overex- pression of MAPKKKα, a protein acting downstream of Prf. Furthermore, we found the PrfD1416V protein is unable to accumulate in plant cells when co-expressed with the Prf LRR domain, likely explaining the cell death suppression. The mechanism for the LRR-induced degradation of PrfD1416V is unknown but may involve interference in the intramo- lecular interactions of Prf or to binding of the unattached LRR to other host proteins that are needed for Prf stability.
文摘本文基于AVISO(Archiving,Validation and Interpretation of Satellite Oceanographic data)1993-2015年间的海表面绝对动力高度数据,研究了台湾以东黑潮的低频变化特征,并探讨了影响其变化的机制。结果表明,台湾以东多年平均的黑潮流幅值约为136km,表层流量值约为7.75×10~4 m^2/s,对应的标准差分别为28km和2.14×10~4 m^2/s。台湾以东黑潮不仅具有显著的季节变化特征,还具有显著的年际变化特征。功率谱分析结果表明,台湾以东黑潮表层流量具有1a和2.8a的显著周期。空间上,台湾东南部黑潮的年际变化幅度比东北部强烈。相关性及合成分析结果表明,台湾以东黑潮的年际变化与PTO(Philippines-Taiwan Oscillation)之间存在显著的相关性。PTO年际震荡所导致的副热带逆流区反气旋式涡旋与气旋式涡旋的相对强度是影响台湾以东黑潮年际变化的主要动力因素。
基金the P-DISC Grant PROMETEO(project number:P-DiSC#03NExuS_BIRD2021-UNIPD)DYNAMO(project number:P-P-DiSC#01BIRD2020-UNIPD)the financial support of the Fellowship in Applied Electrochemistry 2020。
文摘The development of active yet stable catalysts for oxygen reduction reaction(ORR)is still a major issue for the extensive permeation of fuel cells into everyday technology.While nanostructured Pt catalysts are to date the best available systems in terms of activity,the same is not true for stability,particularly under operating conditions.In this work,Pt_(Х)Y alloy nanoparticles are proposed as active and durable electrocatalysts for ORR.Pt_(Х)Y nanoalloys are synthesized and further optimized by laser ablation in liquid followed by laser fragmentation in liquid.The novel integrated laser-assisted methodology succeeded in producing Pt_(Х)Y nanoparticles with the ideal size(<10 nm)of commercial Pt catalysts,yet resulting remarkably more active with E_(1/2)=0.943 V vs.RHE,specific activity=1095μA cm^(-2) and mass activity>1000 A g^(-1).At the same time,the nanoalloys are embedded in a fine Pt oxide matrix,which allows a greater stability of the catalyst than the commercial Pt reference,as directly verified on a gas diffusion electrode.
文摘In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter's efficiency when considering specific conditions.