Smart materials that integrate multi-stimuli response,full reversibility,and dual-visual read-out channel are highly desired for anticounterfeiting and information encryption applications.Herein,we developed a multire...Smart materials that integrate multi-stimuli response,full reversibility,and dual-visual read-out channel are highly desired for anticounterfeiting and information encryption applications.Herein,we developed a multiresponsive perchlorate terpyridyl Pt(Ⅱ)nano complex which could undergo fully reversible conversion between three forms stimulated by water or formaldehyde molecule due to the extent of Pt–Pt interaction.Meanwhile,a dual-visual channel,i.e.,the colorimetric channel changed from yellow to orange or red and the corresponding luminescent channel from orange to orange-red or red,has also been found.The weak and equivalent strength of ion-dipole interaction and hydrogen bond that generated between formaldehyde/water and Pt(II)salt result in the easy-control reversibility between the three forms.Furthermore,by introducing different polymer matrices,1Cl·ClO_(4)@PMMA(1Cl·ClO_(4):[Pt(tpy)Cl]·ClO4,tpy:2,2':6',2''-terpyridine),PMMA:poly(methyl methacrylate))and 1Cl·ClO4@PVA(PVA:polyvinyl alcohol)are successfully constructed,which exhibit different reversible behaviors since the PMMA and PVA matrix exert different influences on the strength of hydrogen-bond.Those smart Pt(II)salt nanostructures present great potential for high-security-level anticounterfeiting application.展开更多
The molecular structures of the ground and the lowest triplet states for a series of Pt(ll) complexes PtLCl(l)[L=6-(2-hydroxyphenyl)-2,2'-bipyridine], Pt(pp)2[pp=2-(2-hydroxyphenyl)pyridine](2), PtbpyClz...The molecular structures of the ground and the lowest triplet states for a series of Pt(ll) complexes PtLCl(l)[L=6-(2-hydroxyphenyl)-2,2'-bipyridine], Pt(pp)2[pp=2-(2-hydroxyphenyl)pyridine](2), PtbpyClz(bpy=2,2'- bipyridine)(3), and the free tridentate L ligand(4) were optimized by the density functional theory B3LYP and UB3LYP methods, respectively. On the basis of optimized geometries, the spectral properties were investigated with time-dependent density functional theory(TD-DFT). In comparison with those of complexes 2 and 3, the more rigid structure of complex 1 together with its low rate of the radiationless decay via nonemissive d-d state leads to higher photoluminescence quantum efficiency. And the phosphorescence quantum efficiency of complex 1 can be easily controlled by modifying auxiliary ligands. The introduction of fluorine ligand into complexes can effectively increase the radiation transition rate and decrease the radiationless d-d transition rate, and as a result, a novel complex PtLF(5) might be a good phosphorescent material suitable for organic electronic devices.展开更多
基金support from the Major Science and Technology Project of Xinjiang(No.2022A01006-3)Science Foundation for Outstanding Young People of Xinjiang(No.2022D01E40)+1 种基金Youth Science Foundation of Xinjiang(No.2022D01C69)Tianchi Doctoral program(Nos.TCBS202130 and 51052300573).
文摘Smart materials that integrate multi-stimuli response,full reversibility,and dual-visual read-out channel are highly desired for anticounterfeiting and information encryption applications.Herein,we developed a multiresponsive perchlorate terpyridyl Pt(Ⅱ)nano complex which could undergo fully reversible conversion between three forms stimulated by water or formaldehyde molecule due to the extent of Pt–Pt interaction.Meanwhile,a dual-visual channel,i.e.,the colorimetric channel changed from yellow to orange or red and the corresponding luminescent channel from orange to orange-red or red,has also been found.The weak and equivalent strength of ion-dipole interaction and hydrogen bond that generated between formaldehyde/water and Pt(II)salt result in the easy-control reversibility between the three forms.Furthermore,by introducing different polymer matrices,1Cl·ClO_(4)@PMMA(1Cl·ClO_(4):[Pt(tpy)Cl]·ClO4,tpy:2,2':6',2''-terpyridine),PMMA:poly(methyl methacrylate))and 1Cl·ClO4@PVA(PVA:polyvinyl alcohol)are successfully constructed,which exhibit different reversible behaviors since the PMMA and PVA matrix exert different influences on the strength of hydrogen-bond.Those smart Pt(II)salt nanostructures present great potential for high-security-level anticounterfeiting application.
文摘The molecular structures of the ground and the lowest triplet states for a series of Pt(ll) complexes PtLCl(l)[L=6-(2-hydroxyphenyl)-2,2'-bipyridine], Pt(pp)2[pp=2-(2-hydroxyphenyl)pyridine](2), PtbpyClz(bpy=2,2'- bipyridine)(3), and the free tridentate L ligand(4) were optimized by the density functional theory B3LYP and UB3LYP methods, respectively. On the basis of optimized geometries, the spectral properties were investigated with time-dependent density functional theory(TD-DFT). In comparison with those of complexes 2 and 3, the more rigid structure of complex 1 together with its low rate of the radiationless decay via nonemissive d-d state leads to higher photoluminescence quantum efficiency. And the phosphorescence quantum efficiency of complex 1 can be easily controlled by modifying auxiliary ligands. The introduction of fluorine ligand into complexes can effectively increase the radiation transition rate and decrease the radiationless d-d transition rate, and as a result, a novel complex PtLF(5) might be a good phosphorescent material suitable for organic electronic devices.
基金supported by the National Natural Science Foundation of China(51603185,51673174)Zhejiang Provincial Natural Science Foundation of China(LQ19E030016,LY19E030006,LZ17E030001)+1 种基金China Postdoctoral Science Foundation(2018M632498)the Zhejiang Provincial Postdoctoral fellowship,China(Z71101009)~~