Origin and tectonic evolution of the Qilian Precambrian basement on NW China were investigated using zircon U-Pb ages with collaborating stratigraphic and paleontological evidence. Zircon grains were separated from tw...Origin and tectonic evolution of the Qilian Precambrian basement on NW China were investigated using zircon U-Pb ages with collaborating stratigraphic and paleontological evidence. Zircon grains were separated from two schists, two granitic gneisses and one mylonized gneiss and dated with SHRIMP. Seventy percent of sixty-one detrital zircon ages from two schists ranges from 0.88 Ga to 3.09 Ga, mostly within 1.0 Ga to 1.8 Ga with a peak at 1.6 Ga to 1.8 Ga, and twenty percent varies from 2.0 Ga to 2.5 Ga. A few falls in the Archean and Neoproterozoic periods. The two granitic gneisses were dated 930±8 Ma and 918±14 Ma, whereas the mylonized granitic gneiss was dated 790±12 Ma. These ages represent two periods of magmatisms, which can be correlated with the early and late stages of magmatisms associated with the Jinningian movement on the Yangtze Blocks. The results from this and previous studies indicate that the ages of the Precambrian detrital zircons from the Qilian Block are widely distributed in the Proterozoic era, distinct from the North China Block which was stable in the Neo-Mesoproterozoic era. By contrast, the age histograms of the detrital zircons from the Qilian Block is similar to those from Precambrian basement of the Yangtze Craton. Therefore, it is suggested that the Qilian Block had a strong affinity toward the Yangtze Craton and might belong to the supercontinent Gondwana in the Neoproterozoic time. This inference is supported by Nd model age (TDM), stratigraphic, and paleontological evidence. It is further considered that the Qilian Block was rifted from the supercontinent Gondwana during late Sinian to form an isolated continent in the Proto-Tethyan Ocean, moving towards the Alaxa Block in the North China Craton. The part of Proto-Tethyan Ocean between the Qilian and Alaxa Blocks should correspond to the so-called Paleo-Qilian Ocean. Following the closure of the Paleo-Qilian Ocean in the early Paleozoic, the Qilian Block collided with the Alaxa Block to form the North Qilian Orogenic Belt. 展开更多
The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicat...The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicate that the porphyry mineralization was closely related to the Early Cretaceous intermediate-felsic intrusions(ca. 123–120 Ma). Various epithermal ore and gangue mineral types were discovered in the middle-shallow part of the orebody, indicating the presence of epithermal mineralization at Tiegelongnan. Potassic, propylitic, phyllic and advanced argillic alteration zones were identified. 40Ar/39Ar dating of hydrothermal biotite(potassic zone), sericite(phyllic zone), and alunite(advanced argillic zone) in/around the ore-bearing granodiorite porphyry yielded 121.1±0.6 Ma(1σ), 120.8±0.7 Ma(1σ) and 117.9±1.6 Ma(1σ), respectively. Five hydrothermal mineralization stages were identified, of which the Stage IV pyrite was Rb-Sr dated to be 117.5±1.8 Ma(2σ), representing the end of epithermal mineralization. Field geology and geochronology suggest that both the epithermal and porphyry mineralization belong to the same magmatic-hydrothermal system. The Tiegelongnan super-large Cu-(Au) deposit may have undergone a prolonged magmatichydrothermal evolution, with the major mineralization event occurring at ca.120–117Ma.展开更多
LA-ICP-MS and SHRIMP U-Pb dating of zircons from orthogneisses and amphibolite from the Central Zone of the Kunlun Orogen is reported in this paper. One orthogneiss sample has metamorphic zircons yielding weighted ave...LA-ICP-MS and SHRIMP U-Pb dating of zircons from orthogneisses and amphibolite from the Central Zone of the Kunlun Orogen is reported in this paper. One orthogneiss sample has metamorphic zircons yielding weighted average 206Pb/238U age of 517.0 +5.0/-6.0 Ma, and the other orthogneiss sample con- tains zircons with inherited magmatic cores giving three population 207Pb/206Pb ages of 955 Ma, 895 Ma and 657 Ma for the magmatic protolith, and metamorphic recrystallized rims with peak 206Pb/238U ages of 559 +12/?17 Ma and 516 ± 13 Ma. The amphibolite yielded three populations of weighted average 206Pb/238U age of 482.0 +10/?8.0 Ma, 516.2 ± 5.8 Ma and 549 ± 10 Ma for the metamorphic zircons. These dating results recorded the tectonothermal events that occurred in the early Paleozoic and the Pre- cambrian time. The records of the Cambrian magmatic-metamorphic event in the Qinling Orogen, the Altyn Tagh belt, north margin of the Qaidam Block and the Kunlun Orogen suggest that continental assembly probably occurred in the early evolutionary history of the Proto-Tethys.展开更多
The Duolong area is the most important part of the Western Bangong-Nujiang Suture Zone porphyry Cu(Au) metallogenic belt, in Tibet, China. Here new detailed data are presented from LAICP-MS zircon U-Pb, whole-rock g...The Duolong area is the most important part of the Western Bangong-Nujiang Suture Zone porphyry Cu(Au) metallogenic belt, in Tibet, China. Here new detailed data are presented from LAICP-MS zircon U-Pb, whole-rock geochemical, and in-situ zircon Hf isotope analyses for igneous rocks in the large Naruo deposit(2.51 Mt of Cu and 82 t of Au) which is located ~2 km NE of the Duolong(Duobuza and Bolong) super-large gold-rich porphyry copper deposit. We integrated our results with previous research of other porphyry deposits in the Duolong area and have identified the timing, geodynamic setting, and petrogenesis of the mineralization-associated magmatic events. Based on the measurements, the Duolong area porphyry Cu(Au) deposit formations are associated with Early Cretaceous intermediate-felsic magmatism, which is consistent with U-Pb zircon ages of 120 Ma. All the main intrusive rocks in the ore-concentrated area have similar lithogeochemical characteristics; they show a relative enrichment in both light rare earth elements(LREEs) and large-ion lithophile elements(LILEs: Rb, Ba, K, etc.) and relative depletion in both heavy rare earth elements(HREEs) and high field strength elements(HFSEs: Nb, Ta, Zr, Hf, etc.). Moreover, the granite porphyry shows positive εHf(t) values between 1.38–7.37 suggesting that magmas were potentially derived from the partial melting of a depleted mantle wedge that had been metasomatized by subducted slab-derived fluids or melts. This paper points out that the formation of the porphyry-epithermal Cu(Au) deposit in the Duolong area was dominated by northward subduction of the Bangongco Tethys Plate beneath the Qiangtang block in the Early Cretaceous(124–114 Ma), when the subducted oceanic crust reached 50–70 km underground and generated different degrees of phase transformation, which lead to a melt produced by dehydration of amphibole minerals, a metasomatized mantle wedge, and induced mantle partial melting that produced the magma. Thos展开更多
Various combinations of diamond, moissanite, zircon, corundum, rutile and titanitehave been recovered from the Bulqiza chromitites. More than 10 grains of diamond have been recovered, most of which are pale yellow to ...Various combinations of diamond, moissanite, zircon, corundum, rutile and titanitehave been recovered from the Bulqiza chromitites. More than 10 grains of diamond have been recovered, most of which are pale yellow to reddish–orange to colorless. The grains are all 100–300 μm in size and mostly anhedral, but with a range of morphologies including elongated, octahedral and subhedral varieties. Their identification was confirmed by a characteristic shift in the Raman spectra between 1325 cm-1 and 1333 cm-1, mostly at 1331.51 cm-1 or 1326.96 cm-1. This investigation extends the occurrence of diamond and moissanite to the Bulqiza chromitites in the Eastern Mirdita Ophiolite. Integration of the mineralogical, petrological and geochemical data of the Bulqiza chromitites suggests their multi–stage formation. Magnesiochromite grains and perhaps small bodies of chromitite formed at various depths in the upper mantle, and encapsulated the ultra–high pressure, highly reduced and crustal minerals. Some oceanic crustal slabs containing the magnesiochromite and their inclusion were later trapped in suprasubduction zones, where they were modified by tholeiitic and boninitic arc magmas, thus changing the magnesiochromite compositions and depositing chromitite ores in melt channels.展开更多
The Dabate Mo-Cu deposit is a medium-sized porphyry-type deposit in the Sailimu Lake region, western Tianshan, China. We present the geology, geochemistry and zircon U-Pb geochronology of granite porphyries from the D...The Dabate Mo-Cu deposit is a medium-sized porphyry-type deposit in the Sailimu Lake region, western Tianshan, China. We present the geology, geochemistry and zircon U-Pb geochronology of granite porphyries from the Dabate district with the intent to constrain their tectonic setting and petrogenesis. Porphyries in the Dabate district include granite porphyry I(gray white color with large phenocrysts), granite porphyry II(pink color with small phenocrysts) and quartz porphyry. Granite porphyry II is the Cu and Mo ore-bearing granitoid in the Dabate deposit. LA-ICPMS zircon U-Pb analyses indicate that granite porphyry II was emplaced at 284.2±1.8 Ma. Granite porphyry I and II have similar geochemical features and are both highly fractionated granites:(1) They have high SiO2 content(70.93–80.18 wt% and 72.14–72.64 wt%, respectively), total alkali(7.58–8.95 wt% and 9.35–9.68 wt%, respectively), mafic index(0.95–0.98 and 0.93–0.94, respectively) and felsic index(0.79–0.94 and 0.89–0.91, respectively);(2) They are characterized by pronounced negative Eu anomaly, "seagullstyle" chondrite-normalized REE patterns and "tetrad effect" of REE;(3) They are rich in Rb, K, Th, Ta, Zr, Hf, Y and REE, but depleted in Sr, P, Ti and Nb. The magma of granite porphyries in Dabate can be interpreted to have been generated by partial melting of the upper crust due to mantle-derived magma underplating in a post-collisional extensional setting.展开更多
The Xianshuihe fault(XSHF) zone, characterized by intense tectonic activity, is located at the southwest boundary of the Bayan Har block, where several major earthquakes have occurred, including the 2008 Wenchuan an...The Xianshuihe fault(XSHF) zone, characterized by intense tectonic activity, is located at the southwest boundary of the Bayan Har block, where several major earthquakes have occurred, including the 2008 Wenchuan and the 2013 Lushan earthquakes. This study analysed underground temperature sequence data for four years at seven measuring points at different depths(maximum depth: 18.9 m) in the southeastern section of the XSHF zone. High-frequency atmospheric noise was removed from the temperature sequences to obtain relatively stable temperature fields and heat fluxes near the measurement points. Our measurements show that the surrounding bedrock at(the seven stations distributed in the fault zone) had heat flux values range from-41.0 to 206 m W/m^2, with a median value of 54.3 m W/m^2. The results indicate a low heat flux in the northern section of DaofuKangting and a relatively high heat flux in the southern section of Kangting, which is consistent with the temperature distributions of the hot springs near the fault. Furthermore, our results suggest that the heat transfer in this field results primarily from stable underground heat conduction. In addition, the underground hydrothermal activity is also an obvious factor controlling the geothermal gradient.展开更多
An early Paleozoic Proto-Tethys ocean in western Yunnan has long been postulated although no robust geological evidence has been identified.Here we investigated the recently-identified Mayidui and Wanhe ophiolitic m...An early Paleozoic Proto-Tethys ocean in western Yunnan has long been postulated although no robust geological evidence has been identified.Here we investigated the recently-identified Mayidui and Wanhe ophiolitic mélanges in SW Yunnan,which occurs in a N-S trending belt east of the late Paleozoic Changning-Menglian suture zone.The ophiolites consist mainly of meta-basalts(amphibole schists),meta-(cumulate)gabbros and gabbroic diorites,and meta-chert-shale,representing ancient oceanic crust and pelagic and hemipelagic sediments,respectively.Six samples of gabbros and gabbroic diorites from 3 profiles(Mayidui,Kongjiao and Yinchanghe)yielded zircon U-Pb ages between 462±6 Ma and 447±9 Ma,constraining the formation of the Mayidui and Wanhe ophiolites to Middle Ordovician.Gabbros from the Mayidui and Kongjiao profiles share similar geochemical characteristics with affinities to tholeiitic series,and are characterized by depleted to slightly enriched LREEs relative to HREEs with(La/Sm)N=0.69-1.87,(La/Yb)N=0.66-4.72.These,along with their predominantly positive wholerock eNd(t)and zircon eHf(t)values,indicate a MORB-like magma source.By contrast,the meta-mafic rocks from the Yinchanghe profile show significantly enriched LREEs((La/Sm)N=0.97-3.33,(La/Yb)N=1.19-14.93),as well as positive whole-rock eNd(t)and positive to negative zircon eHf(t)values,indicating an E-MORB-type mantle source.These geochemical features are consistent with an intra-oceanic setting for the formation of the Mayidui-Wanhe ophiolites.Our data,integrated with available geological evidence,provide robust constraints on the timing and nature of the Mayidui-Wanhe ophiolitic mélange,and suggest that the ophiolites represent remnants of the Proto-Tethys Ocean,which opened through separation of the Indochina and Simao blocks from the northern margin of Gondwana before the Early Cambrian,and evolved through to the Silurian.展开更多
基金the Chinese Development Found and National Science Council (Grant Nos. 91-2116-M-006-16 and 92-2116-M-006-010)
文摘Origin and tectonic evolution of the Qilian Precambrian basement on NW China were investigated using zircon U-Pb ages with collaborating stratigraphic and paleontological evidence. Zircon grains were separated from two schists, two granitic gneisses and one mylonized gneiss and dated with SHRIMP. Seventy percent of sixty-one detrital zircon ages from two schists ranges from 0.88 Ga to 3.09 Ga, mostly within 1.0 Ga to 1.8 Ga with a peak at 1.6 Ga to 1.8 Ga, and twenty percent varies from 2.0 Ga to 2.5 Ga. A few falls in the Archean and Neoproterozoic periods. The two granitic gneisses were dated 930±8 Ma and 918±14 Ma, whereas the mylonized granitic gneiss was dated 790±12 Ma. These ages represent two periods of magmatisms, which can be correlated with the early and late stages of magmatisms associated with the Jinningian movement on the Yangtze Blocks. The results from this and previous studies indicate that the ages of the Precambrian detrital zircons from the Qilian Block are widely distributed in the Proterozoic era, distinct from the North China Block which was stable in the Neo-Mesoproterozoic era. By contrast, the age histograms of the detrital zircons from the Qilian Block is similar to those from Precambrian basement of the Yangtze Craton. Therefore, it is suggested that the Qilian Block had a strong affinity toward the Yangtze Craton and might belong to the supercontinent Gondwana in the Neoproterozoic time. This inference is supported by Nd model age (TDM), stratigraphic, and paleontological evidence. It is further considered that the Qilian Block was rifted from the supercontinent Gondwana during late Sinian to form an isolated continent in the Proto-Tethyan Ocean, moving towards the Alaxa Block in the North China Craton. The part of Proto-Tethyan Ocean between the Qilian and Alaxa Blocks should correspond to the so-called Paleo-Qilian Ocean. Following the closure of the Paleo-Qilian Ocean in the early Paleozoic, the Qilian Block collided with the Alaxa Block to form the North Qilian Orogenic Belt.
基金jointly sponsored by the Public Science and Technology Research Funds Projects,Ministry of Land Resources of the People’s Republic of China(project No.201511017 and 201511022-02)the Basic Research Fund of the Chinese Academy of Geological Sciences(Grant No.YYWF201608)+3 种基金the National Natural Science Foundation of China(Grant No.41402178)Geological Survey Project of the China Geological Survey(project 1212011405040)Golden Dragon Mining Co.Ltd.(project XZJL-2013-JS03)China Scholarship Council
文摘The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicate that the porphyry mineralization was closely related to the Early Cretaceous intermediate-felsic intrusions(ca. 123–120 Ma). Various epithermal ore and gangue mineral types were discovered in the middle-shallow part of the orebody, indicating the presence of epithermal mineralization at Tiegelongnan. Potassic, propylitic, phyllic and advanced argillic alteration zones were identified. 40Ar/39Ar dating of hydrothermal biotite(potassic zone), sericite(phyllic zone), and alunite(advanced argillic zone) in/around the ore-bearing granodiorite porphyry yielded 121.1±0.6 Ma(1σ), 120.8±0.7 Ma(1σ) and 117.9±1.6 Ma(1σ), respectively. Five hydrothermal mineralization stages were identified, of which the Stage IV pyrite was Rb-Sr dated to be 117.5±1.8 Ma(2σ), representing the end of epithermal mineralization. Field geology and geochronology suggest that both the epithermal and porphyry mineralization belong to the same magmatic-hydrothermal system. The Tiegelongnan super-large Cu-(Au) deposit may have undergone a prolonged magmatichydrothermal evolution, with the major mineralization event occurring at ca.120–117Ma.
基金the National Natural Science Foundation of China (Grant Nos. 40772041 and 40272030)Chen Nengsong and an Outstanding Research Award of HKU to Sun Min
文摘LA-ICP-MS and SHRIMP U-Pb dating of zircons from orthogneisses and amphibolite from the Central Zone of the Kunlun Orogen is reported in this paper. One orthogneiss sample has metamorphic zircons yielding weighted average 206Pb/238U age of 517.0 +5.0/-6.0 Ma, and the other orthogneiss sample con- tains zircons with inherited magmatic cores giving three population 207Pb/206Pb ages of 955 Ma, 895 Ma and 657 Ma for the magmatic protolith, and metamorphic recrystallized rims with peak 206Pb/238U ages of 559 +12/?17 Ma and 516 ± 13 Ma. The amphibolite yielded three populations of weighted average 206Pb/238U age of 482.0 +10/?8.0 Ma, 516.2 ± 5.8 Ma and 549 ± 10 Ma for the metamorphic zircons. These dating results recorded the tectonothermal events that occurred in the early Paleozoic and the Pre- cambrian time. The records of the Cambrian magmatic-metamorphic event in the Qinling Orogen, the Altyn Tagh belt, north margin of the Qaidam Block and the Kunlun Orogen suggest that continental assembly probably occurred in the early evolutionary history of the Proto-Tethys.
基金jointly supported by Public Science and Technology Research Funds Projects (201511017)
文摘The Duolong area is the most important part of the Western Bangong-Nujiang Suture Zone porphyry Cu(Au) metallogenic belt, in Tibet, China. Here new detailed data are presented from LAICP-MS zircon U-Pb, whole-rock geochemical, and in-situ zircon Hf isotope analyses for igneous rocks in the large Naruo deposit(2.51 Mt of Cu and 82 t of Au) which is located ~2 km NE of the Duolong(Duobuza and Bolong) super-large gold-rich porphyry copper deposit. We integrated our results with previous research of other porphyry deposits in the Duolong area and have identified the timing, geodynamic setting, and petrogenesis of the mineralization-associated magmatic events. Based on the measurements, the Duolong area porphyry Cu(Au) deposit formations are associated with Early Cretaceous intermediate-felsic magmatism, which is consistent with U-Pb zircon ages of 120 Ma. All the main intrusive rocks in the ore-concentrated area have similar lithogeochemical characteristics; they show a relative enrichment in both light rare earth elements(LREEs) and large-ion lithophile elements(LILEs: Rb, Ba, K, etc.) and relative depletion in both heavy rare earth elements(HREEs) and high field strength elements(HFSEs: Nb, Ta, Zr, Hf, etc.). Moreover, the granite porphyry shows positive εHf(t) values between 1.38–7.37 suggesting that magmas were potentially derived from the partial melting of a depleted mantle wedge that had been metasomatized by subducted slab-derived fluids or melts. This paper points out that the formation of the porphyry-epithermal Cu(Au) deposit in the Duolong area was dominated by northward subduction of the Bangongco Tethys Plate beneath the Qiangtang block in the Early Cretaceous(124–114 Ma), when the subducted oceanic crust reached 50–70 km underground and generated different degrees of phase transformation, which lead to a melt produced by dehydration of amphibole minerals, a metasomatized mantle wedge, and induced mantle partial melting that produced the magma. Thos
基金funded by grants from the NSF China(Nos.41502062,41672046,41541017,41641015)the China Geological Survey(Nos.DD20160023-01,201511022)+2 种基金National Key Research and Development Project of China(2016YFC0600310)from the Institute of Geology,Chinese Academy of Geological Sciences(J1526)IGCP–649
文摘Various combinations of diamond, moissanite, zircon, corundum, rutile and titanitehave been recovered from the Bulqiza chromitites. More than 10 grains of diamond have been recovered, most of which are pale yellow to reddish–orange to colorless. The grains are all 100–300 μm in size and mostly anhedral, but with a range of morphologies including elongated, octahedral and subhedral varieties. Their identification was confirmed by a characteristic shift in the Raman spectra between 1325 cm-1 and 1333 cm-1, mostly at 1331.51 cm-1 or 1326.96 cm-1. This investigation extends the occurrence of diamond and moissanite to the Bulqiza chromitites in the Eastern Mirdita Ophiolite. Integration of the mineralogical, petrological and geochemical data of the Bulqiza chromitites suggests their multi–stage formation. Magnesiochromite grains and perhaps small bodies of chromitite formed at various depths in the upper mantle, and encapsulated the ultra–high pressure, highly reduced and crustal minerals. Some oceanic crustal slabs containing the magnesiochromite and their inclusion were later trapped in suprasubduction zones, where they were modified by tholeiitic and boninitic arc magmas, thus changing the magnesiochromite compositions and depositing chromitite ores in melt channels.
基金financially supported by NSFC project 41203035the National Basic Research Program(2012CB416803)the Chinese Geological Survey Program(DD20160124)
文摘The Dabate Mo-Cu deposit is a medium-sized porphyry-type deposit in the Sailimu Lake region, western Tianshan, China. We present the geology, geochemistry and zircon U-Pb geochronology of granite porphyries from the Dabate district with the intent to constrain their tectonic setting and petrogenesis. Porphyries in the Dabate district include granite porphyry I(gray white color with large phenocrysts), granite porphyry II(pink color with small phenocrysts) and quartz porphyry. Granite porphyry II is the Cu and Mo ore-bearing granitoid in the Dabate deposit. LA-ICPMS zircon U-Pb analyses indicate that granite porphyry II was emplaced at 284.2±1.8 Ma. Granite porphyry I and II have similar geochemical features and are both highly fractionated granites:(1) They have high SiO2 content(70.93–80.18 wt% and 72.14–72.64 wt%, respectively), total alkali(7.58–8.95 wt% and 9.35–9.68 wt%, respectively), mafic index(0.95–0.98 and 0.93–0.94, respectively) and felsic index(0.79–0.94 and 0.89–0.91, respectively);(2) They are characterized by pronounced negative Eu anomaly, "seagullstyle" chondrite-normalized REE patterns and "tetrad effect" of REE;(3) They are rich in Rb, K, Th, Ta, Zr, Hf, Y and REE, but depleted in Sr, P, Ti and Nb. The magma of granite porphyries in Dabate can be interpreted to have been generated by partial melting of the upper crust due to mantle-derived magma underplating in a post-collisional extensional setting.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No.4147408641174084)+2 种基金the CAS/CAFEA international partnership program for creative research teams (KZZD-EW-TZ-19)funded by the Special Fund for Seismic Scientific Research (200808011,2004DIB3J1290)the State Key Laboratory of Earthquake Dynamics,Institute of Geology (LED2009A07)
文摘The Xianshuihe fault(XSHF) zone, characterized by intense tectonic activity, is located at the southwest boundary of the Bayan Har block, where several major earthquakes have occurred, including the 2008 Wenchuan and the 2013 Lushan earthquakes. This study analysed underground temperature sequence data for four years at seven measuring points at different depths(maximum depth: 18.9 m) in the southeastern section of the XSHF zone. High-frequency atmospheric noise was removed from the temperature sequences to obtain relatively stable temperature fields and heat fluxes near the measurement points. Our measurements show that the surrounding bedrock at(the seven stations distributed in the fault zone) had heat flux values range from-41.0 to 206 m W/m^2, with a median value of 54.3 m W/m^2. The results indicate a low heat flux in the northern section of DaofuKangting and a relatively high heat flux in the southern section of Kangting, which is consistent with the temperature distributions of the hot springs near the fault. Furthermore, our results suggest that the heat transfer in this field results primarily from stable underground heat conduction. In addition, the underground hydrothermal activity is also an obvious factor controlling the geothermal gradient.
文摘An early Paleozoic Proto-Tethys ocean in western Yunnan has long been postulated although no robust geological evidence has been identified.Here we investigated the recently-identified Mayidui and Wanhe ophiolitic mélanges in SW Yunnan,which occurs in a N-S trending belt east of the late Paleozoic Changning-Menglian suture zone.The ophiolites consist mainly of meta-basalts(amphibole schists),meta-(cumulate)gabbros and gabbroic diorites,and meta-chert-shale,representing ancient oceanic crust and pelagic and hemipelagic sediments,respectively.Six samples of gabbros and gabbroic diorites from 3 profiles(Mayidui,Kongjiao and Yinchanghe)yielded zircon U-Pb ages between 462±6 Ma and 447±9 Ma,constraining the formation of the Mayidui and Wanhe ophiolites to Middle Ordovician.Gabbros from the Mayidui and Kongjiao profiles share similar geochemical characteristics with affinities to tholeiitic series,and are characterized by depleted to slightly enriched LREEs relative to HREEs with(La/Sm)N=0.69-1.87,(La/Yb)N=0.66-4.72.These,along with their predominantly positive wholerock eNd(t)and zircon eHf(t)values,indicate a MORB-like magma source.By contrast,the meta-mafic rocks from the Yinchanghe profile show significantly enriched LREEs((La/Sm)N=0.97-3.33,(La/Yb)N=1.19-14.93),as well as positive whole-rock eNd(t)and positive to negative zircon eHf(t)values,indicating an E-MORB-type mantle source.These geochemical features are consistent with an intra-oceanic setting for the formation of the Mayidui-Wanhe ophiolites.Our data,integrated with available geological evidence,provide robust constraints on the timing and nature of the Mayidui-Wanhe ophiolitic mélange,and suggest that the ophiolites represent remnants of the Proto-Tethys Ocean,which opened through separation of the Indochina and Simao blocks from the northern margin of Gondwana before the Early Cambrian,and evolved through to the Silurian.