The fatigue lives of materials and structures at different strain levels show het- eroscedasticity. In addition when the number of test specimens is insufficient, the fatigue strength coefficient and fatigue ductility...The fatigue lives of materials and structures at different strain levels show het- eroscedasticity. In addition when the number of test specimens is insufficient, the fatigue strength coefficient and fatigue ductility coefficient of the fitting parameters in the total strain life equa- tion may not have definite physical significance. In this work, a maximum likelihood method for estimating probabilistic strain amplitude fatigue life curves is presented based on the fatigue lives at different strain levels. The proposed method is based on the general basic assumption that the logarithm of fatigue life at an arbitrary strain level is normally distributed. The rela- tionship among the parameters of total strain life equation, monotonic ultimate tensile stress and percentage reduction of area is adopted. The presented approach is finally illustrated by two applications. It is shown that probabilistic strain amplitude-fatigue life curves can be eas- ily estimated based on the maximum likelihood method. The results show that fatigue lives at different strain levels have heteroscedasticity and the values of fatigue strength coefficient and fatigue ductility coefficient obtained by the proposed method are close to those of the true tensile fracture stress and true tensile fracture strain.展开更多
In this study, fatigue tests under different R ratios were conducted on the AZ61 Mg alloy to investigate its fatigue lifetimes and fatigue crack growth (FCG) behavior. The fracture surface of the failed specimens was ...In this study, fatigue tests under different R ratios were conducted on the AZ61 Mg alloy to investigate its fatigue lifetimes and fatigue crack growth (FCG) behavior. The fracture surface of the failed specimens was investigated using a scanning electron microscope to study the size of the intermetallic compounds from which the pioneer fatigue crack initiated and led to the final failure of the specimen. To determine the maximum size of the intermetallic compounds existing within the cross section of the specimen at higher risk, Gumbel’s extreme-value statistics were utilized. In the present study, the intermetallic compounds contained within the specimen were assumed to be the initial cracks existing in the material before the fatigue tests. A modified linear elastic fracture-mechanics parameter, M, proposed by McEvily et al., was used to analyze the short FCG behavior under different stress ratios, R. The relation between the rate of FCG and M parameter was found to be useful and appropriate for predicting the fatigue lifetimes under different R ratios. Moreover, the probabilistic stress-fatigue life (P-S-N) curve of the material under different R ratios could be predicted with this method, which utilizes both the FCG law and a statistical distribution of sizes of the most dangerous intermetallic compounds. The evaluated results were in good agreement with the experimental ones. This correspondence indicates that the estimation method proposed in the present study is effective for evaluation of the probabilistic stress-fatigue life (P-S-N) curve of the material under different R ratios.展开更多
基金supported by the National Natural Science Foundation of China(No.51475022)
文摘The fatigue lives of materials and structures at different strain levels show het- eroscedasticity. In addition when the number of test specimens is insufficient, the fatigue strength coefficient and fatigue ductility coefficient of the fitting parameters in the total strain life equa- tion may not have definite physical significance. In this work, a maximum likelihood method for estimating probabilistic strain amplitude fatigue life curves is presented based on the fatigue lives at different strain levels. The proposed method is based on the general basic assumption that the logarithm of fatigue life at an arbitrary strain level is normally distributed. The rela- tionship among the parameters of total strain life equation, monotonic ultimate tensile stress and percentage reduction of area is adopted. The presented approach is finally illustrated by two applications. It is shown that probabilistic strain amplitude-fatigue life curves can be eas- ily estimated based on the maximum likelihood method. The results show that fatigue lives at different strain levels have heteroscedasticity and the values of fatigue strength coefficient and fatigue ductility coefficient obtained by the proposed method are close to those of the true tensile fracture stress and true tensile fracture strain.
文摘In this study, fatigue tests under different R ratios were conducted on the AZ61 Mg alloy to investigate its fatigue lifetimes and fatigue crack growth (FCG) behavior. The fracture surface of the failed specimens was investigated using a scanning electron microscope to study the size of the intermetallic compounds from which the pioneer fatigue crack initiated and led to the final failure of the specimen. To determine the maximum size of the intermetallic compounds existing within the cross section of the specimen at higher risk, Gumbel’s extreme-value statistics were utilized. In the present study, the intermetallic compounds contained within the specimen were assumed to be the initial cracks existing in the material before the fatigue tests. A modified linear elastic fracture-mechanics parameter, M, proposed by McEvily et al., was used to analyze the short FCG behavior under different stress ratios, R. The relation between the rate of FCG and M parameter was found to be useful and appropriate for predicting the fatigue lifetimes under different R ratios. Moreover, the probabilistic stress-fatigue life (P-S-N) curve of the material under different R ratios could be predicted with this method, which utilizes both the FCG law and a statistical distribution of sizes of the most dangerous intermetallic compounds. The evaluated results were in good agreement with the experimental ones. This correspondence indicates that the estimation method proposed in the present study is effective for evaluation of the probabilistic stress-fatigue life (P-S-N) curve of the material under different R ratios.