Automatic target recognition (ATR) is an important function for modern radar. High resolution range profile (HRRP) of target contains target struc- ture signatures, such as target size, scatterer distribu- tion, e...Automatic target recognition (ATR) is an important function for modern radar. High resolution range profile (HRRP) of target contains target struc- ture signatures, such as target size, scatterer distribu- tion, etc, which is a promising signature for ATR. Sta- tistical modeling of target HRRPs is the key stage for HRRP statistical recognition, including model selection and parameter estimation. For statistical recognition al- gorithms, it is generally assumed that the test samples follow the same distribution model as that of the train- ing data. Since the signal-to-noise ratio (SNR) of the received HRRP is a function of target distance, the as- sumption may be not met in practice. In this paper, we present a robust method for HRRP statistical recogni- tion when SNR of test HRRP is lower than that of train- ing samples. The noise is assumed independent Gaus- sian distributed, while HRRP is modeled by probabilistic principal component analysis (PPCA) model. Simulated experiments based on measured data show the effective- ness of the proposed method.展开更多
文摘Automatic target recognition (ATR) is an important function for modern radar. High resolution range profile (HRRP) of target contains target struc- ture signatures, such as target size, scatterer distribu- tion, etc, which is a promising signature for ATR. Sta- tistical modeling of target HRRPs is the key stage for HRRP statistical recognition, including model selection and parameter estimation. For statistical recognition al- gorithms, it is generally assumed that the test samples follow the same distribution model as that of the train- ing data. Since the signal-to-noise ratio (SNR) of the received HRRP is a function of target distance, the as- sumption may be not met in practice. In this paper, we present a robust method for HRRP statistical recogni- tion when SNR of test HRRP is lower than that of train- ing samples. The noise is assumed independent Gaus- sian distributed, while HRRP is modeled by probabilistic principal component analysis (PPCA) model. Simulated experiments based on measured data show the effective- ness of the proposed method.