期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于PCA算法的人脸识别 被引量:19
1
作者 焦斌亮 陈爽 《计算机工程与应用》 CSCD 北大核心 2011年第18期201-203,共3页
介绍了隐马尔可夫特征脸模型(HMEM),由概率性主成分分析方法(PPCA)与离散空间马尔可夫模型法(SL-HMM)整合而成,具有PPCA和SL-HMM的双重特性。利用ORL数据库进行人脸识别实验,结果说明该模型在性能上表现出较大的优势。
关键词 人脸识别 特征脸 概率主成分分析 隐马尔可夫模型
下载PDF
Robust radar automatic target recognition algorithm based on HRRP signature 被引量:8
2
作者 Hongwei LIU Feng CHEN +1 位作者 Lan DU Zheng BAO 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2012年第1期49-55,共7页
Automatic target recognition (ATR) is an important function for modern radar. High resolution range profile (HRRP) of target contains target struc- ture signatures, such as target size, scatterer distribu- tion, e... Automatic target recognition (ATR) is an important function for modern radar. High resolution range profile (HRRP) of target contains target struc- ture signatures, such as target size, scatterer distribu- tion, etc, which is a promising signature for ATR. Sta- tistical modeling of target HRRPs is the key stage for HRRP statistical recognition, including model selection and parameter estimation. For statistical recognition al- gorithms, it is generally assumed that the test samples follow the same distribution model as that of the train- ing data. Since the signal-to-noise ratio (SNR) of the received HRRP is a function of target distance, the as- sumption may be not met in practice. In this paper, we present a robust method for HRRP statistical recogni- tion when SNR of test HRRP is lower than that of train- ing samples. The noise is assumed independent Gaus- sian distributed, while HRRP is modeled by probabilistic principal component analysis (PPCA) model. Simulated experiments based on measured data show the effective- ness of the proposed method. 展开更多
关键词 radar target recognition high resolution range profile (HRRP) probabilistic principal component analysis ppca
原文传递
基于概率主成分分析的结构健康监测数据修复方法研究 被引量:8
3
作者 马帜 罗尧治 +3 位作者 万华平 YUN C B 沈雁彬 俞峰 《振动与冲击》 EI CSCD 北大核心 2021年第21期135-141,167,共8页
结构健康监测愈来愈成为结构损伤演化行为研究的有效手段和运营安全保障的重要技术。在长期监测过程中,由于监测设备故障、供能中断、数据传输故障等诸多因素存在,监测数据缺失情况不可避免。修复缺失数据有助于保证监测数据的完整性和... 结构健康监测愈来愈成为结构损伤演化行为研究的有效手段和运营安全保障的重要技术。在长期监测过程中,由于监测设备故障、供能中断、数据传输故障等诸多因素存在,监测数据缺失情况不可避免。修复缺失数据有助于保证监测数据的完整性和可靠性。引入了概率主成分分析方法对结构健康监测数据进行修复,该方法无需对完整数据进行训练,尤其适用于完整数据较少、多测点存在数据缺失的情况。概率主成分分析方法能估计修复数据的不确定性水平,给出相应的置信区间。武夷山旋转观众席结构的监测数据用来验证方法的有效性,并与传统主成分分析、多元线性回归法、K最近邻法和压缩传感方法四种数据修复方法对比。结果表明,概率主成分分析方法在不同缺失工况和不同缺失率下的修复效果均最佳。 展开更多
关键词 概率主成分分析(ppca) 缺失数据修复 结构健康监测(SHM) 最大期望(EM)算法 旋转观众席结构
下载PDF
概率核主成分分析及其应用 被引量:6
4
作者 张九龙 邓筱楠 张志禹 《计算机工程与应用》 CSCD 北大核心 2011年第4期165-167,共3页
主成分分析(PCA)、核主成分分析(KPCA)和概率主成分分析(PPCA)是已经取得广泛应用的特征提取方法。提出一种基于概率核主成分分析(PKPCA)的检测液晶屏幕亮点的方法。作为对PPCA的一种非线性扩展,PKPCA在PPCA的基础上引入了核函数方法,... 主成分分析(PCA)、核主成分分析(KPCA)和概率主成分分析(PPCA)是已经取得广泛应用的特征提取方法。提出一种基于概率核主成分分析(PKPCA)的检测液晶屏幕亮点的方法。作为对PPCA的一种非线性扩展,PKPCA在PPCA的基础上引入了核函数方法,因而其捕获模式非线性特征的能力更强。在KPCA和PPCA的基础上推导了PKPCA过程公式,并在检测液晶屏幕亮点的应用中将PKPCA、PPCA、PCA算法进行比较。实验结果表明,PKPCA的检测率和局部信噪比优于其他两者。 展开更多
关键词 主成分分析 核主成分分析 概率主成分分析 亮点检测 概率核主成分分析
下载PDF
基于概率PCA模型的压印字符集本征维数确定方法 被引量:2
5
作者 宋怀波 路长厚 邱化冬 《光电子.激光》 EI CAS CSCD 北大核心 2010年第5期754-757,共4页
提出了一种基于概率主成分分析模型(PPCA)的压印字符图像子空间维数的确定方法。首先,建立观测数据的PPCA模型;然后采用仿真数据进行仿真,对影响维数判别的各种因素进行了分析并给出了3种准则的适用范围;最后对压印字符数据集协方差矩... 提出了一种基于概率主成分分析模型(PPCA)的压印字符图像子空间维数的确定方法。首先,建立观测数据的PPCA模型;然后采用仿真数据进行仿真,对影响维数判别的各种因素进行了分析并给出了3种准则的适用范围;最后对压印字符数据集协方差矩阵的特征值曲线得到本征维数的大致区间范围,通过AIC、BIC和CAIC模型选择准则分别进行最优维数确定。实验表明,该方法可以提高算法的鲁棒性,有效地降低算法的运行时间。 展开更多
关键词 主成分分析(PCA) 概率主分量分析(ppca) 本征维数 维数估计 压印字符图像
原文传递
基于正交余弦变换域概率主成分分析的嵌入隐马尔可夫人脸识别模型
6
作者 王华华 周越 +1 位作者 杨杰 戈新良 《上海交通大学学报》 EI CAS CSCD 北大核心 2007年第6期885-888,893,共5页
提出并证明了概率主成分分析作用于正交余弦变换(DCT)域与作用于空域所获得的结果相同.利用DCT变换的快速压缩性能和概率主成分分析的软降维性能来稳定地获取和表示人脸的局部特征,并把得到的特征向量作为嵌入隐马尔可夫模型的观察向量... 提出并证明了概率主成分分析作用于正交余弦变换(DCT)域与作用于空域所获得的结果相同.利用DCT变换的快速压缩性能和概率主成分分析的软降维性能来稳定地获取和表示人脸的局部特征,并把得到的特征向量作为嵌入隐马尔可夫模型的观察向量,建立了基于DCT域概率主成分分析的嵌入隐马尔可夫人脸识别模型.该模型应用于不同表情和光照下的人脸识别,取得了较好的实验结果. 展开更多
关键词 人脸识别 正交余弦变换 概率主成分分析 嵌入隐马尔可夫模型 特征脸
下载PDF
基于改进重构贡献图的故障定位方法 被引量:17
7
作者 郭小萍 杨猛 李元 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第5期1193-1200,共8页
针对重构贡献(RBC)方法仅适合单变量故障的定位及贡献图中出现拖尾效应(SE)的问题,本文提出一种基于改进重构贡献图(MRBCP)的故障定位方法。采用概率主元分析(PPCA)建立监视模型和统一量度的监视统计量,克服PCA方法中不同量度的监视统... 针对重构贡献(RBC)方法仅适合单变量故障的定位及贡献图中出现拖尾效应(SE)的问题,本文提出一种基于改进重构贡献图(MRBCP)的故障定位方法。采用概率主元分析(PPCA)建立监视模型和统一量度的监视统计量,克服PCA方法中不同量度的监视统计量造成的诊断结果不一致的缺点。对于故障样本,以变量的重构监视统计量为贡献统计量,通过组合最大化思想对故障变量进行逐次定位。在历史故障信息未知的情况下,能够进行多变量故障的定位,然后在定位出的故障变量中进行贡献图分析,进一步对故障变量实现准确定位,从而避免了拖尾效应。通过数值案例和TE过程——实际化工过程的真实模拟过程进行实验,并与基本RBC方法、基于PCA的MRBCP方法进行比较,结果表明了所提方法的有效性。 展开更多
关键词 故障定位 概率主元分析 拖尾效应 改进重构贡献图
下载PDF
一种基于混合概率PCA模型的高光谱图像非监督分类方法 被引量:3
8
作者 吴昊 郁文贤 匡纲要 《国防科技大学学报》 EI CAS CSCD 北大核心 2005年第2期61-64,共4页
提出了一种在期望最大化(EM)算法框架下同时实现混合概率主成分分析(PPCA)降维和聚类的高光谱图像非监督分类方法。它根据不同类别应各有自己代表性的特征集,将通常意义下的特征抽取和模式分类合并在一步内完成,尽可能地保留了可分性;... 提出了一种在期望最大化(EM)算法框架下同时实现混合概率主成分分析(PPCA)降维和聚类的高光谱图像非监督分类方法。它根据不同类别应各有自己代表性的特征集,将通常意义下的特征抽取和模式分类合并在一步内完成,尽可能地保留了可分性;同时该方法具有概率模型的优点,更适合高维数据处理。采用仿真数据和真实数据进行的比较实验表明,该算法较一般不加区分地对所有原始数据进行PCA降维再分类的方法能得到更好的分类结果。 展开更多
关键词 非监督分类 降维 混合概率主成分分析 期望最大化算法
下载PDF
基于混合概率PCA模型高光谱图像本征维数确定 被引量:4
9
作者 普鑫 《计算机工程》 CAS CSCD 北大核心 2007年第9期204-206,共3页
如何有效实现降维是现代成像光谱仪辨识地物类别的一个难点所在。该文在已知高光谱图像地物类别数的情况下,提出了一种采用混合最小描述长度(MMDL)模型选择准则确定高光谱图像本征维数的方法。该方法在期望最大化算法框架下同时实现混合... 如何有效实现降维是现代成像光谱仪辨识地物类别的一个难点所在。该文在已知高光谱图像地物类别数的情况下,提出了一种采用混合最小描述长度(MMDL)模型选择准则确定高光谱图像本征维数的方法。该方法在期望最大化算法框架下同时实现混合PPCA降维和聚类,并根据MMDL准则确定数据降维维数,可以得到数据在概率意义下的精确的降维表征。仿真数据和真实数据进行的比较实验表明,该方法能精确地选择数据的本征维数。 展开更多
关键词 降维 本征维数 混合概率主成分分析 混合最小描述长度准则 期望最大化算法
下载PDF
基于拉普拉斯正则化概率主元分析的故障检测
10
作者 周乐 宋执环 《上海应用技术学院学报(自然科学版)》 2015年第3期260-264,共5页
概率主元分析(PPCA)及其扩展方法用于过程监测时,只提取了过程数据的全局特征,并未考虑数据的局部结构.当数据的流形结构复杂时,传统的全局建模方法难以获得准确的预测效果.提出了一种基于拉普拉斯正则化的概率主成分(LapPPCA)模型,将... 概率主元分析(PPCA)及其扩展方法用于过程监测时,只提取了过程数据的全局特征,并未考虑数据的局部结构.当数据的流形结构复杂时,传统的全局建模方法难以获得准确的预测效果.提出了一种基于拉普拉斯正则化的概率主成分(LapPPCA)模型,将数据的流形结构引入到传统概率模型的似然函数中,使得LapPPCA能够同时提出数据的全局和局部特性.同时提出了基于LapPPCA的过程监测模型,并在田纳西-伊斯曼(TE)过程上验证了该方法的有效性. 展开更多
关键词 拉普拉斯正则 概率主元分析过程监测 故障检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部