Based on the facts of releasing natural enemies and spraying pesticides at different time points, we propose a generalized predator-prey model with impulsive interventions. The threshold values for the existence and s...Based on the facts of releasing natural enemies and spraying pesticides at different time points, we propose a generalized predator-prey model with impulsive interventions. The threshold values for the existence and stability of pest eradication periodic solution are provided under the assumptions of releasing natural enemies either more or less frequent than spray. In order to address how the different pulse time points, control tactics affect the pest control (i.e. the threshold value), the Holling Type II Lotka-Volterra predator- prey system, as an example, with impulsive intervention at different time points axe investigated carefully. The numerical results show how the threshold values are affected by the factors including instantaneous killing rates of pesticides on pests and natural enemies, the release rate of natural enemies and release constant, timing of pesticide application and timing of release period. Furthermore, it is confirmed that the system has the coexistences of pests and natural enemies for a wide range of parameters and with quite different pest amplitudes.展开更多
to biological and chemical control strategy for pest control, a Holling II func- tional response predator-prey system concerning state-dependent impulsive control is investigated. We define the successor functions of ...to biological and chemical control strategy for pest control, a Holling II func- tional response predator-prey system concerning state-dependent impulsive control is investigated. We define the successor functions of semi-continuous dynamic system and give an existence theorem of order 1 periodic solution of such a system. By means of sequence convergence rules and quMitative analysis, we successfully get the conditions of existence and attractiveness of order 1 periodic solution. Our results show that our method used in this paper is more efficient and easier than the existing methods to prove the existence and attractiveness of order 1 periodic solution.展开更多
This paper reports the global asymptotic stability of a three-species predator-prey system involving the prey-taxis. With the assumptions, we establish the global asymptotic stability results of its equilibria, respec...This paper reports the global asymptotic stability of a three-species predator-prey system involving the prey-taxis. With the assumptions, we establish the global asymptotic stability results of its equilibria, respectively. Our results illustrate that 1) the global asymptotic stability of the semi-trivial equilibrium does not involve the prey-taxis coefficients χ, ξ;2) the global asymptotic stability of two boundary equilibria relies on a single prey-taxis coefficient χ and ξ, respectively;3) the global asymptotic stability of the unique positive equilibrium depends on two prey-taxis coefficients χ and ξ.展开更多
In this paper, a diffusive predator-prey system with general functional responses and prey-tactic sensitivities is studied. Providing such generality, we construct a Lyapunov function and we show that the positive con...In this paper, a diffusive predator-prey system with general functional responses and prey-tactic sensitivities is studied. Providing such generality, we construct a Lyapunov function and we show that the positive constant steady state is locally and globally asymptotically stable. With an eye on the biological interpretations, a numerical simulation is performed to illustrate the feasibility of the analytical findings.展开更多
This paper is devoted to study the problem of stability, chaos behavior and parameters estimation of the habitat destruction model with three-species (prey, predator and top-predator). The mathematical formula of the ...This paper is devoted to study the problem of stability, chaos behavior and parameters estimation of the habitat destruction model with three-species (prey, predator and top-predator). The mathematical formula of the model and its proposed interactions are presented. Some important special solutions of systems are discussed. The stationary states of the model are derived. Local stability conditions for the stationary states are derived. Furthermore, the chaotic behavior of the model is discussed and presented graphically. Using Liapunov stability technique, the dynamic estimators of the unknown probabilities and their updating rules are derived. It is found that, the control laws are non-linear functions of the species densities. Numerical illustrative examples are carried out and presented graphically.展开更多
In this paper, we study a class of reaction-diffusion systems with Beddington- DeAngelis function response. The global asymptotic convergence is established by using the comparison principle and the method of monotone...In this paper, we study a class of reaction-diffusion systems with Beddington- DeAngelis function response. The global asymptotic convergence is established by using the comparison principle and the method of monotone iterations, which is via successive improvement of upper-lower solutions function.展开更多
文摘Based on the facts of releasing natural enemies and spraying pesticides at different time points, we propose a generalized predator-prey model with impulsive interventions. The threshold values for the existence and stability of pest eradication periodic solution are provided under the assumptions of releasing natural enemies either more or less frequent than spray. In order to address how the different pulse time points, control tactics affect the pest control (i.e. the threshold value), the Holling Type II Lotka-Volterra predator- prey system, as an example, with impulsive intervention at different time points axe investigated carefully. The numerical results show how the threshold values are affected by the factors including instantaneous killing rates of pesticides on pests and natural enemies, the release rate of natural enemies and release constant, timing of pesticide application and timing of release period. Furthermore, it is confirmed that the system has the coexistences of pests and natural enemies for a wide range of parameters and with quite different pest amplitudes.
文摘to biological and chemical control strategy for pest control, a Holling II func- tional response predator-prey system concerning state-dependent impulsive control is investigated. We define the successor functions of semi-continuous dynamic system and give an existence theorem of order 1 periodic solution of such a system. By means of sequence convergence rules and quMitative analysis, we successfully get the conditions of existence and attractiveness of order 1 periodic solution. Our results show that our method used in this paper is more efficient and easier than the existing methods to prove the existence and attractiveness of order 1 periodic solution.
文摘This paper reports the global asymptotic stability of a three-species predator-prey system involving the prey-taxis. With the assumptions, we establish the global asymptotic stability results of its equilibria, respectively. Our results illustrate that 1) the global asymptotic stability of the semi-trivial equilibrium does not involve the prey-taxis coefficients χ, ξ;2) the global asymptotic stability of two boundary equilibria relies on a single prey-taxis coefficient χ and ξ, respectively;3) the global asymptotic stability of the unique positive equilibrium depends on two prey-taxis coefficients χ and ξ.
文摘In this paper, a diffusive predator-prey system with general functional responses and prey-tactic sensitivities is studied. Providing such generality, we construct a Lyapunov function and we show that the positive constant steady state is locally and globally asymptotically stable. With an eye on the biological interpretations, a numerical simulation is performed to illustrate the feasibility of the analytical findings.
文摘This paper is devoted to study the problem of stability, chaos behavior and parameters estimation of the habitat destruction model with three-species (prey, predator and top-predator). The mathematical formula of the model and its proposed interactions are presented. Some important special solutions of systems are discussed. The stationary states of the model are derived. Local stability conditions for the stationary states are derived. Furthermore, the chaotic behavior of the model is discussed and presented graphically. Using Liapunov stability technique, the dynamic estimators of the unknown probabilities and their updating rules are derived. It is found that, the control laws are non-linear functions of the species densities. Numerical illustrative examples are carried out and presented graphically.
文摘In this paper, we study a class of reaction-diffusion systems with Beddington- DeAngelis function response. The global asymptotic convergence is established by using the comparison principle and the method of monotone iterations, which is via successive improvement of upper-lower solutions function.