Prealloyed Ti-6Al-4V powders were prepared by electrode induction melting gas atomization (EIGA) and plasma rotating electrode process (PREP) in this work. A comparative study of EIGA and PREP powders for hot isos...Prealloyed Ti-6Al-4V powders were prepared by electrode induction melting gas atomization (EIGA) and plasma rotating electrode process (PREP) in this work. A comparative study of EIGA and PREP powders for hot isostatic pressing (HIPing) compaction was conducted. Characterization of important technological parameters such as particle size distribution, powder surface morphology and flowability was carried out. Microstructure and mechanical properties of Ti- 6Al-4V powder compacts HIPed from EIGA and PREP powders were also investigated. The results showed that the EIGA powder has a finer average particle size and higher tap density, while the PREP powder has better flowability and less pores. Micropores can be observed in heat-treated EIGA powder compacts by X-ray tomography and the porosity was found to be about 0.02%. There are no micropores (≥4 μm) to be detected in heat-treated PREP powder compacts. Transgranular fracture mode as well as micropores contributes to the scatter in fatigue property of heat-treated PREP powder compacts. The respective advantages and disadvantages of both EIGA and PREP powders for producing Ti-based complex parts through HIPing were also discussed.展开更多
本文采用机械-化学合金化法制备了微纳米Fe-Co-Cu预合金粉,研究了球磨时间、还原时间和温度对还原粉末粒度、还原率的影响。实验结果表明,采用机械-化学合金化法,在球磨时间为2 h,助磨剂(无水乙醇)含量为100 m L的条件下所得前驱体粉末...本文采用机械-化学合金化法制备了微纳米Fe-Co-Cu预合金粉,研究了球磨时间、还原时间和温度对还原粉末粒度、还原率的影响。实验结果表明,采用机械-化学合金化法,在球磨时间为2 h,助磨剂(无水乙醇)含量为100 m L的条件下所得前驱体粉末粒度分布窄,成分均匀;前驱体在650℃的氢气气氛条件下还原60 min可制得粒度均匀,氧含量低的微纳米Fe-Co-Cu预合金粉末。展开更多
基金supported by the National Key Research and Development Program of China (No. 2016YFB0701200)
文摘Prealloyed Ti-6Al-4V powders were prepared by electrode induction melting gas atomization (EIGA) and plasma rotating electrode process (PREP) in this work. A comparative study of EIGA and PREP powders for hot isostatic pressing (HIPing) compaction was conducted. Characterization of important technological parameters such as particle size distribution, powder surface morphology and flowability was carried out. Microstructure and mechanical properties of Ti- 6Al-4V powder compacts HIPed from EIGA and PREP powders were also investigated. The results showed that the EIGA powder has a finer average particle size and higher tap density, while the PREP powder has better flowability and less pores. Micropores can be observed in heat-treated EIGA powder compacts by X-ray tomography and the porosity was found to be about 0.02%. There are no micropores (≥4 μm) to be detected in heat-treated PREP powder compacts. Transgranular fracture mode as well as micropores contributes to the scatter in fatigue property of heat-treated PREP powder compacts. The respective advantages and disadvantages of both EIGA and PREP powders for producing Ti-based complex parts through HIPing were also discussed.
文摘本文采用机械-化学合金化法制备了微纳米Fe-Co-Cu预合金粉,研究了球磨时间、还原时间和温度对还原粉末粒度、还原率的影响。实验结果表明,采用机械-化学合金化法,在球磨时间为2 h,助磨剂(无水乙醇)含量为100 m L的条件下所得前驱体粉末粒度分布窄,成分均匀;前驱体在650℃的氢气气氛条件下还原60 min可制得粒度均匀,氧含量低的微纳米Fe-Co-Cu预合金粉末。