A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0....A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0. 35μm mixed-signal technology. Measurements demonstrate that the temperature coefficient is ± 36. 3ppm/℃ from 0 to 100℃ when the VID inputs are 11110.As the supply voltage is varied from 2.7 to 5V, the voltage reference varies by about 5mV. The maximum glitch of the transient response is about 20mV at 125kHz. Depending on the state of the five VID inputs,an output voltage between 1.1 and 1.85V is programmed in increments of 25mV.展开更多
We propose a voltage reference based on the weighted difference between the gate-source voltages of an nMOS and a pMOS operating in their saturation regions. No diodes or parasitic bipolar transistors are used, The ci...We propose a voltage reference based on the weighted difference between the gate-source voltages of an nMOS and a pMOS operating in their saturation regions. No diodes or parasitic bipolar transistors are used, The circuit is simulated and fabricated with SMIC 0.18μm mixed-signal technology,and our measurements demonstrate that its temperature coefficient is 44ppm/℃ and its PSRR is - 46dB, It works well when Vdd is above 650mV. The active area of the circuit is about 0.05mm^2.展开更多
文摘A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0. 35μm mixed-signal technology. Measurements demonstrate that the temperature coefficient is ± 36. 3ppm/℃ from 0 to 100℃ when the VID inputs are 11110.As the supply voltage is varied from 2.7 to 5V, the voltage reference varies by about 5mV. The maximum glitch of the transient response is about 20mV at 125kHz. Depending on the state of the five VID inputs,an output voltage between 1.1 and 1.85V is programmed in increments of 25mV.
文摘We propose a voltage reference based on the weighted difference between the gate-source voltages of an nMOS and a pMOS operating in their saturation regions. No diodes or parasitic bipolar transistors are used, The circuit is simulated and fabricated with SMIC 0.18μm mixed-signal technology,and our measurements demonstrate that its temperature coefficient is 44ppm/℃ and its PSRR is - 46dB, It works well when Vdd is above 650mV. The active area of the circuit is about 0.05mm^2.