During the last two decades,porous coordination polymers(PCPs),usually called as metal-organic frameworks(MOFs),have been developed rapidly due to their versatile structural diversities and potential physical and chem...During the last two decades,porous coordination polymers(PCPs),usually called as metal-organic frameworks(MOFs),have been developed rapidly due to their versatile structural diversities and potential physical and chemical functions.This article provides a short review of recent advances in the design and constructions of porous coordination polymers based on three planar rigid ligands,including imidazole-4,5-dicarboxlate(H3IDC),1H-tetrazole(HTz),as well as 1H-tetrazole-5-carboxylate(H2Tzc).Their preparations,crystal structures,and desirable properties have been reviewed.展开更多
As nanomedicine-based clinical strategies have continued to develop,the possibility of combining chemotherapy and singlet oxygen-dependent photodynamic therapy(PDT)to treat pancreatic cancer(PaC)has emerged as a viabl...As nanomedicine-based clinical strategies have continued to develop,the possibility of combining chemotherapy and singlet oxygen-dependent photodynamic therapy(PDT)to treat pancreatic cancer(PaC)has emerged as a viable therapeutic modality.The efficacy of such an approach,however,is likely to be constrained by the mechanisms of drug release and tumor oxygen levels.In the present study,we developed an Fe(Ⅲ)-complexed porous coordination network(PCN)which we then used to encapsulate PTX(PCN-Fe(Ⅲ)-PTX)nanoparticles(NPs)in order to treat PaC via a combination of chemotherapy and PDT.The resultant NPs were able to release drug in response to both laser irradiation and pH changes to promote drug accumulation within tumors.Furthermore,through a Fe(Ⅲ)-based Fenton-like reaction these NPs were able to convert H2O2 in the tumor site to O2,thereby regulating local hypoxic conditions and enhancing the efficacy of PDT approaches.Also these NPs were suitable for use as a T1-MRI weighted contrast agent,making them viable for monitoring therapeutic efficacy upon treatment.Our results in both cell line and animal models of PaC suggest that these NPs represent an ideal agent for mediating effective MRI-guided chemotherapy-PDT,giving them great promise for the clinical treatment of PaC.展开更多
Porous polymers have been recently recog- nized as one of the most important precursors for fabrication of heteroatom-doped porous carbons due to the intrinsic porous structure, easy available heteroatom- containing m...Porous polymers have been recently recog- nized as one of the most important precursors for fabrication of heteroatom-doped porous carbons due to the intrinsic porous structure, easy available heteroatom- containing monomers and versatile polymerization meth- ods. However, the heteroatom elements in as-produced porous carbons are quite relied on monomers. So far, the manipulating of heteroatom in porous polymer derived porous carbons are still very rare and challenge. In this work, a sulfur-enriched porous polymer, which was prepared from a diacetylene-linked porous polymer, was used as precursor to prepare S-doped and/or N-doped porous carbons under nitrogen and/or ammonia atmo- spheres. Remarkably, S content can sharply decrease from 36.3% to 0.05% after ammonia treatment. The N content and specific surface area of as-fabricated porous carbons can reach up to 1.32% and 1508 m^2·g^-1, respectively. As the electrode materials for electrical double-layer capacitors, as-fabricated porous carbons exhibit high specific capacitance of up to 431.6 F·g^-1 at 5 mW·s^-1 and excellent cycling stability of 99.74% capacitance retention after 3000 cycles at 100 mV·s^-1. Furthermore, as the electro- chemical catalysts for oxygen reduction reaction, as- fabricated porous carbons presented ultralow half-wave- potential of 0.78 V versus RHE. This work not only offers a new strategy for manipulating S and N doping features for the porous carbons derived from S-containing porous polymers, but also paves the way for the structure- performance interrelationship study of heteroatoms co- doped porous carbon for energy applications.展开更多
Volatile organic compounds(VOCs)with high toxicity and carcinogenicity are emitted from kinds of industries,which endanger human health and the environment.Adsorption is a promising method for the treatment of VOCs du...Volatile organic compounds(VOCs)with high toxicity and carcinogenicity are emitted from kinds of industries,which endanger human health and the environment.Adsorption is a promising method for the treatment of VOCs due to its low cost and high efficiency.In recent years,activated carbons,zeolites,and mesoporous materials are widely used to remove VOCs because of their high specific surface area and abundant porosity.However,the hydrophilic nature and low desorption rate of those materials limit their commercial application.Furthermore,the adsorption capacities of VOCs still need to be improved.Porous organic polymers(POPs)with extremely high porosity,structural diversity,and hydrophobic have been considered as one of the most promising candidates for VOCs adsorption.This review generalized the superiority of POPs for VOCs adsorption compared to other porous materials and summarized the studies of VOCs adsorption on different types of POPs.Moreover,the mechanism of competitive adsorption between water and VOCs on the POPs was discussed.Finally,a concise outlook for utilizing POPs for VOCs adsorption was discussed,noting areas in which further work is needed to develop the next-generation POPs for practical applications.展开更多
Porous organic polymers(POPs)have attracted great attention in past decades.Although diverse functional POPs have been developed,multistimuli-responsive POPs with excellent aggregate-state luminescence together with g...Porous organic polymers(POPs)have attracted great attention in past decades.Although diverse functional POPs have been developed,multistimuli-responsive POPs with excellent aggregate-state luminescence together with good chiroptical properties have rarely been reported.Herein,two pairs of Salen-type enantiomeric PoPs with multistimuli-responsive luminescence and chiral features were designed and synthesized by facile polycondensation reactions between polyfunctional aggregation-induced emission luminogen(AlEgen)-containing salicylaldehyde derivatives and chiral diamines.With Salen units in polymer backbones as tetradentate ligands,a series of POP-metal complexes were further prepared.The obtained POPs and metal complexes show good porosity,high thermal stability,and obvious circular dichroism signals.Moreover,benefiting from the coexistence of AlEgen and Salen units in polymer structures,these POPs exhibit excellent luminescence performance in aggregate states and tunable fluorescence behaviors in response to external stimuli of Zn^(2+)ion,mechanical forces,organic solvent,and acids.Due to the dynamic feature of Schiff base C=N bonds,the present POPs can efficiently undergo hydrolysis reactions under strong acidic conditions to reproduce the AlEgencontaining monomers,and such an acid-induced degradation process can be directly visualized and dynamically monitored via fluorescence variation.These properties collectively make the POPs candidate materials for applications in heterogeneous asymmetric catalysis,fluorescence sensing,biomedicine,etc.展开更多
This review presents a comprehensive examination of fully conjugated covalent organic frameworks(COFs),which constitute an emerging class of porous materials with immense potential for diverse applications.This articl...This review presents a comprehensive examination of fully conjugated covalent organic frameworks(COFs),which constitute an emerging class of porous materials with immense potential for diverse applications.This article focuses on diversified fully conjugated COFs,including sp2 carbon-carbon linkages,pyrazine linkages,benzobisoxazole linkages,dioxin linkages,β-aminoalkenone linkages,etc.The synthesis techniques and structural attributes of these COFs are expounded upon in great detail,along with their potential applications in various fields.The review thus provides a valuable resource for researchers keen on delving into the synthesis and applications of fully conjugated COFs,thereby highlighting their potential for developing novel functional materials with distinctive properties.展开更多
Hypercrosslinked polymers(HCPs)with large surface areas,high intrinsic porosities and low production costs may be available platforms for iodine capture.However,the lack of iodine-philicity binding sites limits their ...Hypercrosslinked polymers(HCPs)with large surface areas,high intrinsic porosities and low production costs may be available platforms for iodine capture.However,the lack of iodine-philicity binding sites limits their adsorption capacity.Here we use vapor-phase postsynthetic amination strategy to introduce electron-donating amino groups into the prefabricated HCPs for enhancing their iodine capture performance.Through simple vapor-phase exposure,the halogen-containing HCPs can be grafted by amines through nucleophilic substitution toward chloro groups.Combining with the abundant amino groups and high porosities,the amino-functionalized porous polymers show substantially increased iodine adsorption capacity,about 221%as that of original one,accompanied by excellent recyclability.Mechanism investigations reveal the key roles of the electron-donor amino groups andπ-conjugated benzene rings along with structure characteristics of porous polymer frameworks in iodine capture.Moreover,this vapor-phase amination strategy shows good generality and can be extended to various amines,e.g.,ethylenediamine,1,3-diaminopropane and diethylenetriamine.Our work proves that this simple vapor-phase postsynthetic functionalization strategy may be applied in other porous polymers with wide application prospects in adsorption,separation and storage.展开更多
Comprehensive Summary Advanced functionalization-decorated porous organic polymers(POPs)are emerging as a prominent research focus,spanning from their construction to applications in gas storage and separation,catalys...Comprehensive Summary Advanced functionalization-decorated porous organic polymers(POPs)are emerging as a prominent research focus,spanning from their construction to applications in gas storage and separation,catalysis,energy storage,electrochemistry,and other areas.Furthermore,the inherent organic nature,tailored pore structures,and adjustable chemical components of POPs offer a versatile platform for the incorporation of various metal active sites.Meticulously designed molecular building blocks can serve as organic ligands uniformly distributed throughout POPs,leading to the effective isolation of inorganic metal active sites at the molecular level.In this manner,POPs containing active metal centers bridge the gap between organic and inorganic scaffolds.This review aims to provide an overview of recent research progress on metal-decorated POPs,focusing on strategies for incorporating metal active sites into POPs and their applications in adsorption,separation,catalysis,and photoelectrochemistry.Finally,current challenges and future prospects are discussed for further research.展开更多
Two flexible click-based porous organic polymers (CPP-F1 and CPP-F2) have been readily synthesized. SEM images show CPP-F1 is a 3D network, while CPP-F2 exhibits a granular morphology. Pd(OAc)2 can be easily incor...Two flexible click-based porous organic polymers (CPP-F1 and CPP-F2) have been readily synthesized. SEM images show CPP-F1 is a 3D network, while CPP-F2 exhibits a granular morphology. Pd(OAc)2 can be easily incorporated into CPP-F1 and CPP-F2 to form Pd@CPP-F1 and Pd@CPP-F2, respectively. The interactions between the polymers and palladium are confirmed by solid-state 13C NMR, IR and XPS. Palladium nanoparticles (NPs) are formed after hydrogenation of olefins and nitrobenzene. Palladium NPs in CPP-F1 are well dispersed on the external surface of the polymer, while palladium NPs in CPP-F2 are located in the interior pores and on the external surface. In comparison with NPs in CPP-F1, the dual distribution of palladium NPs in CPP-F2 results in higher selectivity in the hydrogenation of 1,3-cyclohexadiene to cyclohexane. The catalytic systems can be recycled several times without obvious loss of catalytic activity or agglomeration of palladium NPs. Hot filtration, mercury drop tests and ICP analyses suggest that the catalytic systems proceed via a heterogeneous pathway.展开更多
Development of new metal-free heterogeneous catalysts has long been the focus of intense research interest.The integration of multifunctional monomers into the skeletons of porous organic polymers(POPs)provides an eff...Development of new metal-free heterogeneous catalysts has long been the focus of intense research interest.The integration of multifunctional monomers into the skeletons of porous organic polymers(POPs)provides an efficient pathway to achieve this goal.Herein,we rationally designed and successfully prepared a new Troger’s base(TB)-derived POPs by insertion of pillar[5]arene macrocycle as a positively auxiliary group.Combined the both merits of pillar[5]arene macrocycle and TB moiety,the as-prepared polymer was further explored as an effective metal-free heterogeneous catalyst and exhibited promoted catalytic performance in Knoevenagel condensation and CO_(2)conversion.This work provides a new strategy to fabricate metal-free heterogeneous catalysts based on macrocyclic POPs.展开更多
A monolithic column-based mass spectrometry(MS)analysis kit was prepared for whole blood analysis with MS.The kit is disposable and can be used for purification,storage,transportation and direct analysis of whole bloo...A monolithic column-based mass spectrometry(MS)analysis kit was prepared for whole blood analysis with MS.The kit is disposable and can be used for purification,storage,transportation and direct analysis of whole blood.The kit mainly consists of a capillary for quantitative microsampling,a cation exchange monolithic column for purification and storage,and a syringe for loading sample.This kit is very friendly to various users that one can easily siphon the blood in the kit followed by rapid clean-up.We established a quantitative method using the kit with a limit detection as low as 0.33 nmol/L,and achieved more than five orders of magnitude enhancement in sensitivity compared to direct nanoelectrospray ionization MS analysis.The column can avoid analyte exposure to environment,which helps the storage of the sample for laboratory analysis.The relative standard deviation of immediate blood analysis and storage blood analysis within 10 d was less than 10%.This method has been successfully applied to the quantitative analysis of procainamide hydrochloride in 2μL rat blood.These results indicate that this disposable kit does have the potential to achieve highly sensitive quantitative MS analysis in biological samples,which is expected to become a cost-effective and powerful tool for in vitro diagnostics.展开更多
文摘During the last two decades,porous coordination polymers(PCPs),usually called as metal-organic frameworks(MOFs),have been developed rapidly due to their versatile structural diversities and potential physical and chemical functions.This article provides a short review of recent advances in the design and constructions of porous coordination polymers based on three planar rigid ligands,including imidazole-4,5-dicarboxlate(H3IDC),1H-tetrazole(HTz),as well as 1H-tetrazole-5-carboxylate(H2Tzc).Their preparations,crystal structures,and desirable properties have been reviewed.
基金supported by the National Natural Science Foundation of China(Nos.81527803,81420108018,U1432114,81550110258,8161101589,81650410654 and 31971292)National Key R&D Program of China(Nos.2018YFC0115900 and 2018YFC0910601)+5 种基金Key Breakthrough Program of Chinese Academy of Sciences(No.KGZD-EW-T06)Zhejiang Science and Technology Project(No.2019C03077)the Hundred Talents Program of Chinese Academy of Sciences(No.2010-735)Youth Natural Science Fund Project of Zhejiang Province(No.LQ19H180004)Natural Science Fund Project of Ningbo City(No.2018A610380)Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province(No.2019E10020)。
文摘As nanomedicine-based clinical strategies have continued to develop,the possibility of combining chemotherapy and singlet oxygen-dependent photodynamic therapy(PDT)to treat pancreatic cancer(PaC)has emerged as a viable therapeutic modality.The efficacy of such an approach,however,is likely to be constrained by the mechanisms of drug release and tumor oxygen levels.In the present study,we developed an Fe(Ⅲ)-complexed porous coordination network(PCN)which we then used to encapsulate PTX(PCN-Fe(Ⅲ)-PTX)nanoparticles(NPs)in order to treat PaC via a combination of chemotherapy and PDT.The resultant NPs were able to release drug in response to both laser irradiation and pH changes to promote drug accumulation within tumors.Furthermore,through a Fe(Ⅲ)-based Fenton-like reaction these NPs were able to convert H2O2 in the tumor site to O2,thereby regulating local hypoxic conditions and enhancing the efficacy of PDT approaches.Also these NPs were suitable for use as a T1-MRI weighted contrast agent,making them viable for monitoring therapeutic efficacy upon treatment.Our results in both cell line and animal models of PaC suggest that these NPs represent an ideal agent for mediating effective MRI-guided chemotherapy-PDT,giving them great promise for the clinical treatment of PaC.
文摘Porous polymers have been recently recog- nized as one of the most important precursors for fabrication of heteroatom-doped porous carbons due to the intrinsic porous structure, easy available heteroatom- containing monomers and versatile polymerization meth- ods. However, the heteroatom elements in as-produced porous carbons are quite relied on monomers. So far, the manipulating of heteroatom in porous polymer derived porous carbons are still very rare and challenge. In this work, a sulfur-enriched porous polymer, which was prepared from a diacetylene-linked porous polymer, was used as precursor to prepare S-doped and/or N-doped porous carbons under nitrogen and/or ammonia atmo- spheres. Remarkably, S content can sharply decrease from 36.3% to 0.05% after ammonia treatment. The N content and specific surface area of as-fabricated porous carbons can reach up to 1.32% and 1508 m^2·g^-1, respectively. As the electrode materials for electrical double-layer capacitors, as-fabricated porous carbons exhibit high specific capacitance of up to 431.6 F·g^-1 at 5 mW·s^-1 and excellent cycling stability of 99.74% capacitance retention after 3000 cycles at 100 mV·s^-1. Furthermore, as the electro- chemical catalysts for oxygen reduction reaction, as- fabricated porous carbons presented ultralow half-wave- potential of 0.78 V versus RHE. This work not only offers a new strategy for manipulating S and N doping features for the porous carbons derived from S-containing porous polymers, but also paves the way for the structure- performance interrelationship study of heteroatoms co- doped porous carbon for energy applications.
基金supported by the National Key R&D Pro-gram of China(Nos.2019YFC1904100,2019YFC1904102,2019YFC1903902,and 2016YFC0205300)the National En-gineering Laboratory for Mobile Source Emission Control Technology of China(No.NELMS2017A03)+3 种基金the Natural Na-tional Science Foundation of China(Nos.21503144,21690083)Tianjin Research Program of Ecological Environmental Treat-ment(Nos.18ZXSZSF00210,18ZXSZSF00060)the Tianjin Research Program of Application Foundation and Advanced Technique(No.16JCQNJC05400)Major Science and Tech-nology Project for Ecological Environment Management in Tianjin(No.18ZXSZSF00210)。
文摘Volatile organic compounds(VOCs)with high toxicity and carcinogenicity are emitted from kinds of industries,which endanger human health and the environment.Adsorption is a promising method for the treatment of VOCs due to its low cost and high efficiency.In recent years,activated carbons,zeolites,and mesoporous materials are widely used to remove VOCs because of their high specific surface area and abundant porosity.However,the hydrophilic nature and low desorption rate of those materials limit their commercial application.Furthermore,the adsorption capacities of VOCs still need to be improved.Porous organic polymers(POPs)with extremely high porosity,structural diversity,and hydrophobic have been considered as one of the most promising candidates for VOCs adsorption.This review generalized the superiority of POPs for VOCs adsorption compared to other porous materials and summarized the studies of VOCs adsorption on different types of POPs.Moreover,the mechanism of competitive adsorption between water and VOCs on the POPs was discussed.Finally,a concise outlook for utilizing POPs for VOCs adsorption was discussed,noting areas in which further work is needed to develop the next-generation POPs for practical applications.
基金the National Natural Science Foundation of China(22271197)the Ministry of Science and Technology of China(2021YFA1501600)+5 种基金the Guangdong Basic and Applied Basic Research Foundation(2023A1515011578)the Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates(2019B030301003)the Shenzhen Science and Technology Program(RCYX20221008092924059,JCYJ20220531102601003)the Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates(2023B1212060003)the 2035 Research Excellence Program of Shenzhen University(2023c001)the Innovation and Technology Commission(ITC-CNERC14SCO1).
文摘Porous organic polymers(POPs)have attracted great attention in past decades.Although diverse functional POPs have been developed,multistimuli-responsive POPs with excellent aggregate-state luminescence together with good chiroptical properties have rarely been reported.Herein,two pairs of Salen-type enantiomeric PoPs with multistimuli-responsive luminescence and chiral features were designed and synthesized by facile polycondensation reactions between polyfunctional aggregation-induced emission luminogen(AlEgen)-containing salicylaldehyde derivatives and chiral diamines.With Salen units in polymer backbones as tetradentate ligands,a series of POP-metal complexes were further prepared.The obtained POPs and metal complexes show good porosity,high thermal stability,and obvious circular dichroism signals.Moreover,benefiting from the coexistence of AlEgen and Salen units in polymer structures,these POPs exhibit excellent luminescence performance in aggregate states and tunable fluorescence behaviors in response to external stimuli of Zn^(2+)ion,mechanical forces,organic solvent,and acids.Due to the dynamic feature of Schiff base C=N bonds,the present POPs can efficiently undergo hydrolysis reactions under strong acidic conditions to reproduce the AlEgencontaining monomers,and such an acid-induced degradation process can be directly visualized and dynamically monitored via fluorescence variation.These properties collectively make the POPs candidate materials for applications in heterogeneous asymmetric catalysis,fluorescence sensing,biomedicine,etc.
基金supported by the National Natural Science Foundation of China(22175101,51972185)the Natural Science Foundation of Shandong Province(ZZR2020ZD38).
文摘This review presents a comprehensive examination of fully conjugated covalent organic frameworks(COFs),which constitute an emerging class of porous materials with immense potential for diverse applications.This article focuses on diversified fully conjugated COFs,including sp2 carbon-carbon linkages,pyrazine linkages,benzobisoxazole linkages,dioxin linkages,β-aminoalkenone linkages,etc.The synthesis techniques and structural attributes of these COFs are expounded upon in great detail,along with their potential applications in various fields.The review thus provides a valuable resource for researchers keen on delving into the synthesis and applications of fully conjugated COFs,thereby highlighting their potential for developing novel functional materials with distinctive properties.
基金financially supported by National Natural Science Foundation of China(No.22178143)Guangdong Basic and Applied Basic Research Foundation(Nos.2021A1515110365 and2020B1515120036)+3 种基金Natural Science Foundation of Anhui Higher Education Institutions(No.2023AH050168)Innovation and Entrepreneurship Training Program for China College Students(No.202310878049)Director Foundation of Anhui Province Engineering Laboratory of Advanced Building Materials(No.JZCL2305ZR)Ph.D.Startup Foundation of Anhui Jianzhu University(No.2023QDZ34)。
文摘Hypercrosslinked polymers(HCPs)with large surface areas,high intrinsic porosities and low production costs may be available platforms for iodine capture.However,the lack of iodine-philicity binding sites limits their adsorption capacity.Here we use vapor-phase postsynthetic amination strategy to introduce electron-donating amino groups into the prefabricated HCPs for enhancing their iodine capture performance.Through simple vapor-phase exposure,the halogen-containing HCPs can be grafted by amines through nucleophilic substitution toward chloro groups.Combining with the abundant amino groups and high porosities,the amino-functionalized porous polymers show substantially increased iodine adsorption capacity,about 221%as that of original one,accompanied by excellent recyclability.Mechanism investigations reveal the key roles of the electron-donor amino groups andπ-conjugated benzene rings along with structure characteristics of porous polymer frameworks in iodine capture.Moreover,this vapor-phase amination strategy shows good generality and can be extended to various amines,e.g.,ethylenediamine,1,3-diaminopropane and diethylenetriamine.Our work proves that this simple vapor-phase postsynthetic functionalization strategy may be applied in other porous polymers with wide application prospects in adsorption,separation and storage.
基金supported by the National Natural Science Foundation of China(Nos.52173212,and 52103275)Hunan Provincial Natural Science Foundation for Distinguished Young Scientists(2022J10080)the Key Science and Technology Project of Changsha(KH2301015).
文摘Comprehensive Summary Advanced functionalization-decorated porous organic polymers(POPs)are emerging as a prominent research focus,spanning from their construction to applications in gas storage and separation,catalysis,energy storage,electrochemistry,and other areas.Furthermore,the inherent organic nature,tailored pore structures,and adjustable chemical components of POPs offer a versatile platform for the incorporation of various metal active sites.Meticulously designed molecular building blocks can serve as organic ligands uniformly distributed throughout POPs,leading to the effective isolation of inorganic metal active sites at the molecular level.In this manner,POPs containing active metal centers bridge the gap between organic and inorganic scaffolds.This review aims to provide an overview of recent research progress on metal-decorated POPs,focusing on strategies for incorporating metal active sites into POPs and their applications in adsorption,separation,catalysis,and photoelectrochemistry.Finally,current challenges and future prospects are discussed for further research.
文摘Two flexible click-based porous organic polymers (CPP-F1 and CPP-F2) have been readily synthesized. SEM images show CPP-F1 is a 3D network, while CPP-F2 exhibits a granular morphology. Pd(OAc)2 can be easily incorporated into CPP-F1 and CPP-F2 to form Pd@CPP-F1 and Pd@CPP-F2, respectively. The interactions between the polymers and palladium are confirmed by solid-state 13C NMR, IR and XPS. Palladium nanoparticles (NPs) are formed after hydrogenation of olefins and nitrobenzene. Palladium NPs in CPP-F1 are well dispersed on the external surface of the polymer, while palladium NPs in CPP-F2 are located in the interior pores and on the external surface. In comparison with NPs in CPP-F1, the dual distribution of palladium NPs in CPP-F2 results in higher selectivity in the hydrogenation of 1,3-cyclohexadiene to cyclohexane. The catalytic systems can be recycled several times without obvious loss of catalytic activity or agglomeration of palladium NPs. Hot filtration, mercury drop tests and ICP analyses suggest that the catalytic systems proceed via a heterogeneous pathway.
基金the National Natural Science Foundation of China(No.U1808210)the Natural Science Foundation of Liaoning province(No.2019-MS-046).
文摘Development of new metal-free heterogeneous catalysts has long been the focus of intense research interest.The integration of multifunctional monomers into the skeletons of porous organic polymers(POPs)provides an efficient pathway to achieve this goal.Herein,we rationally designed and successfully prepared a new Troger’s base(TB)-derived POPs by insertion of pillar[5]arene macrocycle as a positively auxiliary group.Combined the both merits of pillar[5]arene macrocycle and TB moiety,the as-prepared polymer was further explored as an effective metal-free heterogeneous catalyst and exhibited promoted catalytic performance in Knoevenagel condensation and CO_(2)conversion.This work provides a new strategy to fabricate metal-free heterogeneous catalysts based on macrocyclic POPs.
基金financially supported by the National Natural Science Foundation of China(No.22104112)the startup foundation of Wuhan University(No.600460076).
文摘A monolithic column-based mass spectrometry(MS)analysis kit was prepared for whole blood analysis with MS.The kit is disposable and can be used for purification,storage,transportation and direct analysis of whole blood.The kit mainly consists of a capillary for quantitative microsampling,a cation exchange monolithic column for purification and storage,and a syringe for loading sample.This kit is very friendly to various users that one can easily siphon the blood in the kit followed by rapid clean-up.We established a quantitative method using the kit with a limit detection as low as 0.33 nmol/L,and achieved more than five orders of magnitude enhancement in sensitivity compared to direct nanoelectrospray ionization MS analysis.The column can avoid analyte exposure to environment,which helps the storage of the sample for laboratory analysis.The relative standard deviation of immediate blood analysis and storage blood analysis within 10 d was less than 10%.This method has been successfully applied to the quantitative analysis of procainamide hydrochloride in 2μL rat blood.These results indicate that this disposable kit does have the potential to achieve highly sensitive quantitative MS analysis in biological samples,which is expected to become a cost-effective and powerful tool for in vitro diagnostics.