Renewable porous biochar and 2 D MXene have attracted significant attention in high-end electromagnetic interference(EMI)shielding fields,due to unique orderly structures and excellent electrical conductivity(r)value....Renewable porous biochar and 2 D MXene have attracted significant attention in high-end electromagnetic interference(EMI)shielding fields,due to unique orderly structures and excellent electrical conductivity(r)value.In this work,the wood-derived porous carbon(WPC)skeleton from natural wood was performed as a template.And excellent conductive and ultra-light 3D MXene aerogel was then constructed to prepare the MXene aerogel/WPC composites,based on highly ordered honeycomb cells inner WPC as a microreactor.Higher carbonization temperature is more conducive to the graphitization degree of natural wood.MXene aerogel/WPC composites achieve the optimal EMI SE value of up to 71.3 d B at density as low as 0.197 g/cm^3.Such wall-like"mortar-brick"structures(WPC skeleton as"mortar"and MXene aerogel as"brick")not only effectively solve the unstable structure problem of MXene aerogel networks,but also greatly prolong the transmission paths of the electromagnetic waves and dissipate the incident electromagnetic waves in the form of heat and electric energy,thereby exhibiting the superior EMI shielding performance.In addition,MXene aerogel/WPC composites also exhibit good anisotropic compressive strength,excellent thermal insulation and flame retardant properties.Such ultra-light,green and efficient multi-functional bio-carbon-based composites have great application potential in the high-end EMI shielding fields of aerospace and national defence industry,etc.展开更多
The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the ...The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster mechanisms of rock media.展开更多
The research of rock properties based on its inherent microscopic to mesoscopic porous structure has drawn great attention for its potential in predicting the macroscopic behavior of rocks.An accurate reconstruction o...The research of rock properties based on its inherent microscopic to mesoscopic porous structure has drawn great attention for its potential in predicting the macroscopic behavior of rocks.An accurate reconstruction of the threedimensional porous structure is a premise for the related studies of hydraulic and mechanical properties of rocks,such as the transport properties and mechanical responses under pressures.In this paper,we present a computer procedure for reconstructing the 3D porous structure of low-permeability sandstone.Two large-size 3D models are reconstructed based on the information of a reference model which is established from computed tomography(CT)images.A self-developed finite element method is applied to analyze the nonlinear mechanical behavior of the sandstone based on its reconstructed model and to compare the results with those based on the reference model.The good consistency of the obtained mechanical responses indicates the potential of using reconstruction models to predict the influences of porous structure on the mechanical properties of low-permeability sandstone.展开更多
Graphene has shown great potential in microwave absorption(MA) owing to its high surface area, low density,tunable electrical conductivity and good chemical stability.To fully realize graphenes& MA ability, the mi...Graphene has shown great potential in microwave absorption(MA) owing to its high surface area, low density,tunable electrical conductivity and good chemical stability.To fully realize graphenes& MA ability, the microstructure of graphene should be carefully addressed. Here we prepared graphene microflowers(Gmfs) with highly porous structure for high-performance MA filler material. The efficient absorption bandwidth(reflection loss B-10 dB) reaches 5.59 GHz and the minimum reflection loss is up to -42.9 dB, showing significant increment compared with stacked graphene. Such performance is higher than most graphene-based materials in the literature. Besides, the low filling content(10 wt%) and low density(40–50 mg cm^(-3))are beneficial for the practical applications. Without compounding with magnetic materials or conductive polymers,Gmfs show outstanding MA performance with the aid of rational microstructure design. Furthermore, Gmfs exhibit advantages in facile processibility and large-scale production compared with other porous graphene materials including aerogels and foams.展开更多
Carbon-sulfur composites as the cathode of rechargeable Li-S batteries have shown outstanding electrochemical performance for high power devices. Here, we report the promising electrochemical charge-discharge properti...Carbon-sulfur composites as the cathode of rechargeable Li-S batteries have shown outstanding electrochemical performance for high power devices. Here, we report the promising electrochemical charge-discharge properties of a carbon-sulfur composite, in which sulfur is impregnated in porous hollow carbon spheres (PHCSs) via a melt-diffusion method. Instrumental analysis shows that the PHCSs, which were prepared by a facile template strategy, are characterized by high specific surface area (1520 m2.g 1), large pore volume (2.61 cm^3·g^-1), broad pore size distribution from micropores to mesopores, and high electronic conductivity (2.22 S·cm-1). The carbon-sulfur composite with a sulfur content of 50.2 wt.% displays an initial discharge capacity of 1450 mA.h·g^-1 (which is 86.6% of the theoretical specific capacity) and a reversible discharge capacity of 1357 mA.h·g^-1 after 50 cycles at 0.05 C charge-discharge rate. At a higher rate of 0.5 C, the capacity stabilized at around 800 mA-h·g^-1 after 30 cycles. The results illustrate that the porous carbon-sulfur composites with hierarchically porous structure have potential application as the cathode of Li-S batteries because of their effective improvement of the electronic conductivity, the repression of the volume expansion, and the reduction of the shuttling loss.展开更多
The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar st...The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar stealth for protecting the weapons from being detected.Many nanomaterials were studied as MAMs,but not all of them have the satisfactory performance.Recently,metal-organic frameworks(MOFs) have attracted tremendous attention owing to their tunable chemical structures,diverse properties,large specific surface area and uniform pore distribution.MOF can transform to porous carbon(PC) which is decorated with metal species at appropriate pyrolysis temperature.However,the loss mechanism of pure MOF-derived PC is often relatively simple.In order to further improve the MA performance,the MOFs coupled with other loss materials are a widely studied method.In this review,we summarize the theories of MA,the progress of different MOF-derived PC-based MAMs,tunable chemical structures incorporated with dielectric loss or magnetic loss materials.The different MA performance and mechanisms are discussed in detail.Finally,the shortcomings,challenges and perspectives of MOF-derived PC-based MAMs are also presented.We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application.展开更多
Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys...Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.展开更多
We report a facile way to grow various porous NiO nanostructures including nanoslices,nanoplates,and nanocolumns,which show a structure-dependence in their specific charge capacitances.The formation of controllable po...We report a facile way to grow various porous NiO nanostructures including nanoslices,nanoplates,and nanocolumns,which show a structure-dependence in their specific charge capacitances.The formation of controllable porosity is due to the dehydration and re-crystallization of β-Ni(OH)_(2) nanoplates synthesized by a hydrothermal process.Thermogravimetric analysis shows that the decomposition temperature of the β-Ni(OH)_(2) nanostructures is related to their morphology.In electrochemical tests,the porous NiO nanostructures show stable cycling performance with retention of specific capacitance over 1000 cycles.Interestingly,the formation of nanocolumns by the stacking of β-Ni(OH)_(2) nanoslices/plates favors the creation of small pores in the NiO nanocrystals obtained after annealing,and the surface area is over five times larger than that of NiO nanoslices and nanoplates.Consequently,the specific capacitance of the porous NiO nanocolumns(390 F/g)is significantly higher than that of the nanoslices(176 F/g)or nanoplates(285 F/g)at a discharge current of 5 A/g.This approach provides a clear illustration of the process-structure-property relationship in nanocrystal synthesis and potentially offers strategies to enhance the performance of supercapacitor electrodes.展开更多
Inspired by natural porous architectures,numerous attempts have been made to generate porous structures.Owing to the smooth surfaces,highly interconnected porous architectures,and mathematical controllable geometry fe...Inspired by natural porous architectures,numerous attempts have been made to generate porous structures.Owing to the smooth surfaces,highly interconnected porous architectures,and mathematical controllable geometry features,triply periodic minimal surface(TPMS)is emerging as an outstanding solution to constructing porous structures in recent years.However,many advantages of TPMS are not fully utilized in current research.Critical problems of the process from design,manufacturing to applications need further systematic and integrated discussions.In this work,a comprehensive overview of TPMS porous structures is provided.In order to generate the digital models of TPMS,the geometry design algorithms and performance control strategies are introduced according to diverse requirements.Based on that,precise additive manufacturing methods are summarized for fabricating physical TPMS products.Furthermore,actual multidisciplinary applications are presented to clarify the advantages and further potential of TPMS porous structures.Eventually,the existing problems and further research outlooks are discussed.展开更多
Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical...Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical model for the dynamic-thermo-hydro-mechanical coupling of a non-local thermal equilibrium fuid-saturated porous medium, in which the two constituents are assumed to be incompressible and immiscible, is established under the assumption of small de- formation of the solid phase, small velocity of the fuid phase and small temperature changes of the two constituents. The mathematical model of a local thermal equilibrium fuid-saturated porous medium can be obtained directly from the above one. Several Gurtin-type variational principles, especially Hu-Washizu type variational principles, for the initial boundary value problems of dy- namic and quasi-static responses are presented. It should be pointed out that these variational principles can be degenerated easily into the case of isothermal incompressible fuid-saturated elastic porous media, which have been discussed previously.展开更多
The discovery of osteoinductivity of calcium phosphate(Ca-P)ceramics has set an enduring paradigm of conferring biological regenerative activity to materials with carefully designed structural characteristics.The uniq...The discovery of osteoinductivity of calcium phosphate(Ca-P)ceramics has set an enduring paradigm of conferring biological regenerative activity to materials with carefully designed structural characteristics.The unique phase composition and porous structural features of osteoinductive Ca-P ceramics allow it to interact with signaling molecules and extracellular matrices in the host system,creating a local environment conducive to new bone formation.Mounting evidence now indicate that the osteoinductive activity of Ca-P ceramics is linked to their physicochemical and three-dimensional structural properties.Inspired by this conceptual breakthrough,many laboratories have shown that other materials can be also enticed to join the rank of tissue-inducing biomaterials,and besides the bones,other tissues such as cartilage,nerves and blood vessels were also regenerated with the assistance of biomaterials.Here,we give a brief historical recount about the discovery of the osteoinductivity of Ca-P ceramics,summarize the underlying material factors and biological characteristics,and discuss the mechanism of osteoinduction concerning protein adsorption,and the interaction with different types of cells,and the involvement of the vascular and immune systems.展开更多
Inspired by the nature,lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites(GHPCM)were successfully fabricated through an in situ strategy.The biological microstructure of lotus leaf wa...Inspired by the nature,lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites(GHPCM)were successfully fabricated through an in situ strategy.The biological microstructure of lotus leaf was well preserved after treatment.Different pores with gradient pore sizes ranging from 300 to 5μm were hierarchically distributed in the composites.In addition,the surface states of lotus leaf resulted in the Janus-like morphologies of MoS2.The GHPCM exhibit excellent electromagnetic wave absorption performance,with the minimum reflection loss of−50.1 dB at a thickness of 2.4 mm and the maximum effective bandwidth of 6.0 GHz at a thickness of 2.2 mm.The outstanding performance could be attributed to the synergy of conductive loss,polarization loss,and impedance matching.In particularly,we provided a brand-new dielectric sum-quotient model to analyze the electromagnetic performance of the non-magnetic material system.It suggests that the specific sum and quotient of permittivity are the key to keep reflection loss below−10 dB within a certain frequency range.Furthermore,based on the concept of material genetic engineering,the dielectric constant could be taken into account to seek for suitable materials with designable electromagnetic absorption performance.展开更多
Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in...Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in soil. The present study examined the effect of PS on pH, cadmium transformation and cadmium solubility in Andosol and Alluvial soil, and also compared its effects with CaCO3, acidic porous hydrated calcium silicate (APS) and silica gel. Soil cadmium was operationally fractionationed into exchangeable (Exch), bound to carbonates (Carb), bound to iron and manganese oxides (FeMnOx), bound to organic matters (OM) and residual (Res) fraction. Application of PS and CaCO3 at hig rates enhanced soil pH, while APS and silica gel did not obviously change soil pH. PS and CaCO3 also increased the FeMnOx-Cd in Andosol and Carb-Cd in Alluvial soil, thus reducing the Exch-Cd in the tested soils. However, PS was less effective than CaCO3 at the same application rate. Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel. There were no obvious differences in the solubility of cadmium in soils treated with PS, APS, silica gel and CaCO3 except Andosol treated 2.0% CaCO3 at the same pH of soil-CaC12 suspensions. These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS.展开更多
To test the influence of binder strength, porous concretes with 4 binder strengths between 30.0-135.0 MPa and 5 void ratios between 15%-35% were tested. The results indicated that for the same aggregate, the rates of ...To test the influence of binder strength, porous concretes with 4 binder strengths between 30.0-135.0 MPa and 5 void ratios between 15%-35% were tested. The results indicated that for the same aggregate, the rates of strength reduction due to the increases in void ratio were the same for binders with different strengths. To study the influence of aggregate size, 3 single size aggregates with nominal sizes of 5.0, 13.0 and 20.0 mm (Nos. 7, 6 and 5 according to JIS A 5001) were used to make porous concrete. The strengths of porous concrete are found to be dependent on aggregate size. The rate of strength reduction of porous concrete with small aggregate size is found to be higher than that with larger aggregate size. At the same void ratio, the strength of porous concrete with large aggregate is larger than that with small aggregate. The general equations for porous concrete are related to compressive strength and void ratio for different binder strengths and aggregate sizes.展开更多
Porous metal scaffolds play an important role in the orthopedic field, due to their wide applications in prostheses implantation. Some previous studies showed that the scaffolds with trabecular bone structure reconstr...Porous metal scaffolds play an important role in the orthopedic field, due to their wide applications in prostheses implantation. Some previous studies showed that the scaffolds with trabecular bone structure reconstructed via computed tomography had satisfactory biocompatibility. However, the reverse modeling scaffolds were inflexible for customized design. Therefore, a top-down designing biomimetic bone scaffold with favorable mechanical performances and cytocompatibility is urgently demanded for orthopedic implants. An emerging additive manufacturing technique, selective laser melting, was employed to fabricate the trabecular-like porous Ti-6Al-4 V scaffolds with varying irregularities(0.05-0.5) and porosities(48.83%–74.28%) designed through a novel Voronoi-Tessellation based method. Micro-computed tomography and scanning electron microscopy were used to characterize the scaffolds’ morphology.Quasi-static compression tests were performed to evaluate the scaffolds’ mechanical properties. The MG63 cells culture in vitro experiments, including adhesion, proliferation, and differentiation, were conducted to study the cytocompatibility of scaffolds. Compressive tests of scaffolds revealed an apparent elastic modulus range of 1.93–5.24 GPa and an ultimate strength ranging within 44.9–237.5 MPa, which were influenced by irregularity and porosity, and improved by heat treatment. Furthermore, the in vitro assay suggested that the original surface of the SLM-fabricated scaffolds was favorable for osteoblasts adhesion and migration because of micro scale pores and ravines. The trabecular-like porous scaffolds with full irregularity and higher porosity exhibited enhanced cells proliferation and osteoblast differentiation at earlier time, due to their preferable combination of small and large pores with various shapes. This study suggested that selective laser melting-derived Ti-6Al-4 V scaffold with the trabecular-like porous structure designed through Voronoi-Tessellation method, favorable mechanical performanc展开更多
The geometric features and the distribution properties of pores in rocks were in- vestigated by means of CT scanning tests of sandstones. The centroidal coordi- nates of pores, the statistic characterristics of pore d...The geometric features and the distribution properties of pores in rocks were in- vestigated by means of CT scanning tests of sandstones. The centroidal coordi- nates of pores, the statistic characterristics of pore distance, quantity, size and their probability density functions were formulated in this paper. The Monte Carlo method and the random number generating algorithm were employed to generate two series of random numbers with the desired statistic characteristics and prob- ability density functions upon which the random distribution of pore position, dis- tance and quantity were determined. A three-dimensional porous structural model of sandstone was constructed based on the FLAC3D program and the information of the pore position and distribution that the series of random numbers defined. On the basis of modelling, the Brazil split tests of rock discs were carried out to ex- amine the stress distribution, the pattern of element failure and the inosculation of failed elements. The simulation indicated that the proposed model was consistent with the realistic porous structure of rock in terms of their statistic properties of pores and geometric similarity. The built-up model disclosed the influence of pores on the stress distribution, failure mode of material elements and the inosculation of failed elements.展开更多
基金supported by the Foundation of National Natural Science Foundation of China(51973173)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)+2 种基金Space Supporting Fund from China Aerospace Science and Industry Corporation(2019-HT-XG)Foundation of Aeronautics Science Fund(2017ZF53071)the School-enterprise Collaborative Innovation Fund for Graduate Students of Northwestern Polytechnical University(XQ201913)。
文摘Renewable porous biochar and 2 D MXene have attracted significant attention in high-end electromagnetic interference(EMI)shielding fields,due to unique orderly structures and excellent electrical conductivity(r)value.In this work,the wood-derived porous carbon(WPC)skeleton from natural wood was performed as a template.And excellent conductive and ultra-light 3D MXene aerogel was then constructed to prepare the MXene aerogel/WPC composites,based on highly ordered honeycomb cells inner WPC as a microreactor.Higher carbonization temperature is more conducive to the graphitization degree of natural wood.MXene aerogel/WPC composites achieve the optimal EMI SE value of up to 71.3 d B at density as low as 0.197 g/cm^3.Such wall-like"mortar-brick"structures(WPC skeleton as"mortar"and MXene aerogel as"brick")not only effectively solve the unstable structure problem of MXene aerogel networks,but also greatly prolong the transmission paths of the electromagnetic waves and dissipate the incident electromagnetic waves in the form of heat and electric energy,thereby exhibiting the superior EMI shielding performance.In addition,MXene aerogel/WPC composites also exhibit good anisotropic compressive strength,excellent thermal insulation and flame retardant properties.Such ultra-light,green and efficient multi-functional bio-carbon-based composites have great application potential in the high-end EMI shielding fields of aerospace and national defence industry,etc.
基金supported by the National Basic Research Program of China ("973" Project) (Grant Nos 2010CB226804, 2002CB412705)the National Natural Science Foundation of China (Grant No 50974125)+1 种基金the Natural Sciences & Engineering Research Council of Canada (PGS-D2-2006)Beijing Key Laboratory Projects
文摘The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster mechanisms of rock media.
基金the financial supports from the National Natural Science Foundation for Distinguished Young Scholars of China(51125017)the National Natural Science Foundation of China(51374213)the National Basic Research Pro-gram of China(Grant 2010CB226804,2011CB201201).
文摘The research of rock properties based on its inherent microscopic to mesoscopic porous structure has drawn great attention for its potential in predicting the macroscopic behavior of rocks.An accurate reconstruction of the threedimensional porous structure is a premise for the related studies of hydraulic and mechanical properties of rocks,such as the transport properties and mechanical responses under pressures.In this paper,we present a computer procedure for reconstructing the 3D porous structure of low-permeability sandstone.Two large-size 3D models are reconstructed based on the information of a reference model which is established from computed tomography(CT)images.A self-developed finite element method is applied to analyze the nonlinear mechanical behavior of the sandstone based on its reconstructed model and to compare the results with those based on the reference model.The good consistency of the obtained mechanical responses indicates the potential of using reconstruction models to predict the influences of porous structure on the mechanical properties of low-permeability sandstone.
基金supported by the National Natural Science Foundation of China (Nos. 21325417 and 51533008)National Key R&D Program of China (No. 2016YFA0200200)Fundamental Research Funds for the Central Universities (2017XZZX008-06)
文摘Graphene has shown great potential in microwave absorption(MA) owing to its high surface area, low density,tunable electrical conductivity and good chemical stability.To fully realize graphenes& MA ability, the microstructure of graphene should be carefully addressed. Here we prepared graphene microflowers(Gmfs) with highly porous structure for high-performance MA filler material. The efficient absorption bandwidth(reflection loss B-10 dB) reaches 5.59 GHz and the minimum reflection loss is up to -42.9 dB, showing significant increment compared with stacked graphene. Such performance is higher than most graphene-based materials in the literature. Besides, the low filling content(10 wt%) and low density(40–50 mg cm^(-3))are beneficial for the practical applications. Without compounding with magnetic materials or conductive polymers,Gmfs show outstanding MA performance with the aid of rational microstructure design. Furthermore, Gmfs exhibit advantages in facile processibility and large-scale production compared with other porous graphene materials including aerogels and foams.
文摘Carbon-sulfur composites as the cathode of rechargeable Li-S batteries have shown outstanding electrochemical performance for high power devices. Here, we report the promising electrochemical charge-discharge properties of a carbon-sulfur composite, in which sulfur is impregnated in porous hollow carbon spheres (PHCSs) via a melt-diffusion method. Instrumental analysis shows that the PHCSs, which were prepared by a facile template strategy, are characterized by high specific surface area (1520 m2.g 1), large pore volume (2.61 cm^3·g^-1), broad pore size distribution from micropores to mesopores, and high electronic conductivity (2.22 S·cm-1). The carbon-sulfur composite with a sulfur content of 50.2 wt.% displays an initial discharge capacity of 1450 mA.h·g^-1 (which is 86.6% of the theoretical specific capacity) and a reversible discharge capacity of 1357 mA.h·g^-1 after 50 cycles at 0.05 C charge-discharge rate. At a higher rate of 0.5 C, the capacity stabilized at around 800 mA-h·g^-1 after 30 cycles. The results illustrate that the porous carbon-sulfur composites with hierarchically porous structure have potential application as the cathode of Li-S batteries because of their effective improvement of the electronic conductivity, the repression of the volume expansion, and the reduction of the shuttling loss.
基金financial support from Ministry of Science and Technology of China(MoST,2016YFA0200200)the National Natural Science Foundation of China(NSFC,21875114,51373078,and 51422304)NSF of Tianjin City(15JCYBJC17700)。
文摘The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar stealth for protecting the weapons from being detected.Many nanomaterials were studied as MAMs,but not all of them have the satisfactory performance.Recently,metal-organic frameworks(MOFs) have attracted tremendous attention owing to their tunable chemical structures,diverse properties,large specific surface area and uniform pore distribution.MOF can transform to porous carbon(PC) which is decorated with metal species at appropriate pyrolysis temperature.However,the loss mechanism of pure MOF-derived PC is often relatively simple.In order to further improve the MA performance,the MOFs coupled with other loss materials are a widely studied method.In this review,we summarize the theories of MA,the progress of different MOF-derived PC-based MAMs,tunable chemical structures incorporated with dielectric loss or magnetic loss materials.The different MA performance and mechanisms are discussed in detail.Finally,the shortcomings,challenges and perspectives of MOF-derived PC-based MAMs are also presented.We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application.
基金supported by the National High Technology Research and Development Program (863 Program,2015AA034603)the National Natural Science Foundation of China (21377008,201077007,20973017)+1 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal InstitutionsScientific Research Base Construction-Science and Technology Creation Platform National Materials Research Base Construction~~
文摘Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.
基金The authors gratefully acknowledge the AcRF Tier 1 RG 31/08 from Ministry of Education Singapore and No.NRF2009EWT-CERP001-026 Singaporethe National Natural Science Foundation of China(No.20901003)+1 种基金the Natural Science Foundation of the Educational Department of Anhui Province(No.KJ2008B167)the Young Teacher Program of Anhui Normal University(No.2009xqnzc19).
文摘We report a facile way to grow various porous NiO nanostructures including nanoslices,nanoplates,and nanocolumns,which show a structure-dependence in their specific charge capacitances.The formation of controllable porosity is due to the dehydration and re-crystallization of β-Ni(OH)_(2) nanoplates synthesized by a hydrothermal process.Thermogravimetric analysis shows that the decomposition temperature of the β-Ni(OH)_(2) nanostructures is related to their morphology.In electrochemical tests,the porous NiO nanostructures show stable cycling performance with retention of specific capacitance over 1000 cycles.Interestingly,the formation of nanocolumns by the stacking of β-Ni(OH)_(2) nanoslices/plates favors the creation of small pores in the NiO nanocrystals obtained after annealing,and the surface area is over five times larger than that of NiO nanoslices and nanoplates.Consequently,the specific capacitance of the porous NiO nanocolumns(390 F/g)is significantly higher than that of the nanoslices(176 F/g)or nanoplates(285 F/g)at a discharge current of 5 A/g.This approach provides a clear illustration of the process-structure-property relationship in nanocrystal synthesis and potentially offers strategies to enhance the performance of supercapacitor electrodes.
基金financially supported by National Key R&D Program of China(No.2020YFC1107103)Key Research and Development Program of Zhejiang Province(No.2021C01107)+1 种基金China Postdoctoral Science Foundation(No.2020M681846)Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51821093).
文摘Inspired by natural porous architectures,numerous attempts have been made to generate porous structures.Owing to the smooth surfaces,highly interconnected porous architectures,and mathematical controllable geometry features,triply periodic minimal surface(TPMS)is emerging as an outstanding solution to constructing porous structures in recent years.However,many advantages of TPMS are not fully utilized in current research.Critical problems of the process from design,manufacturing to applications need further systematic and integrated discussions.In this work,a comprehensive overview of TPMS porous structures is provided.In order to generate the digital models of TPMS,the geometry design algorithms and performance control strategies are introduced according to diverse requirements.Based on that,precise additive manufacturing methods are summarized for fabricating physical TPMS products.Furthermore,actual multidisciplinary applications are presented to clarify the advantages and further potential of TPMS porous structures.Eventually,the existing problems and further research outlooks are discussed.
基金Project supported by the National Natural Science Foundation of China(No.10272070)and the Development Foun-dation of the Education Commission of Shanghai,China.
文摘Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical model for the dynamic-thermo-hydro-mechanical coupling of a non-local thermal equilibrium fuid-saturated porous medium, in which the two constituents are assumed to be incompressible and immiscible, is established under the assumption of small de- formation of the solid phase, small velocity of the fuid phase and small temperature changes of the two constituents. The mathematical model of a local thermal equilibrium fuid-saturated porous medium can be obtained directly from the above one. Several Gurtin-type variational principles, especially Hu-Washizu type variational principles, for the initial boundary value problems of dy- namic and quasi-static responses are presented. It should be pointed out that these variational principles can be degenerated easily into the case of isothermal incompressible fuid-saturated elastic porous media, which have been discussed previously.
基金This work was supported by the National Natural Science Foundation of China(No.81190131)the National Basic Research Program of China(‘973’Program No.2011CB606201).
文摘The discovery of osteoinductivity of calcium phosphate(Ca-P)ceramics has set an enduring paradigm of conferring biological regenerative activity to materials with carefully designed structural characteristics.The unique phase composition and porous structural features of osteoinductive Ca-P ceramics allow it to interact with signaling molecules and extracellular matrices in the host system,creating a local environment conducive to new bone formation.Mounting evidence now indicate that the osteoinductive activity of Ca-P ceramics is linked to their physicochemical and three-dimensional structural properties.Inspired by this conceptual breakthrough,many laboratories have shown that other materials can be also enticed to join the rank of tissue-inducing biomaterials,and besides the bones,other tissues such as cartilage,nerves and blood vessels were also regenerated with the assistance of biomaterials.Here,we give a brief historical recount about the discovery of the osteoinductivity of Ca-P ceramics,summarize the underlying material factors and biological characteristics,and discuss the mechanism of osteoinduction concerning protein adsorption,and the interaction with different types of cells,and the involvement of the vascular and immune systems.
基金This project was supported by the National Natural Science Foundation of China(Nos.51971162,U1933112,51671146)the Program of Shanghai Technology Research Leader(18XD1423800)the Fundamental Research Funds for the Central Universities(22120180096).
文摘Inspired by the nature,lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites(GHPCM)were successfully fabricated through an in situ strategy.The biological microstructure of lotus leaf was well preserved after treatment.Different pores with gradient pore sizes ranging from 300 to 5μm were hierarchically distributed in the composites.In addition,the surface states of lotus leaf resulted in the Janus-like morphologies of MoS2.The GHPCM exhibit excellent electromagnetic wave absorption performance,with the minimum reflection loss of−50.1 dB at a thickness of 2.4 mm and the maximum effective bandwidth of 6.0 GHz at a thickness of 2.2 mm.The outstanding performance could be attributed to the synergy of conductive loss,polarization loss,and impedance matching.In particularly,we provided a brand-new dielectric sum-quotient model to analyze the electromagnetic performance of the non-magnetic material system.It suggests that the specific sum and quotient of permittivity are the key to keep reflection loss below−10 dB within a certain frequency range.Furthermore,based on the concept of material genetic engineering,the dielectric constant could be taken into account to seek for suitable materials with designable electromagnetic absorption performance.
基金Project supported by the Grant-in-Aid for Scientific Research from Ministry of Education, Science, Sport, and Technology of Japan (No.13876015).
文摘Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in soil. The present study examined the effect of PS on pH, cadmium transformation and cadmium solubility in Andosol and Alluvial soil, and also compared its effects with CaCO3, acidic porous hydrated calcium silicate (APS) and silica gel. Soil cadmium was operationally fractionationed into exchangeable (Exch), bound to carbonates (Carb), bound to iron and manganese oxides (FeMnOx), bound to organic matters (OM) and residual (Res) fraction. Application of PS and CaCO3 at hig rates enhanced soil pH, while APS and silica gel did not obviously change soil pH. PS and CaCO3 also increased the FeMnOx-Cd in Andosol and Carb-Cd in Alluvial soil, thus reducing the Exch-Cd in the tested soils. However, PS was less effective than CaCO3 at the same application rate. Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel. There were no obvious differences in the solubility of cadmium in soils treated with PS, APS, silica gel and CaCO3 except Andosol treated 2.0% CaCO3 at the same pH of soil-CaC12 suspensions. These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS.
文摘To test the influence of binder strength, porous concretes with 4 binder strengths between 30.0-135.0 MPa and 5 void ratios between 15%-35% were tested. The results indicated that for the same aggregate, the rates of strength reduction due to the increases in void ratio were the same for binders with different strengths. To study the influence of aggregate size, 3 single size aggregates with nominal sizes of 5.0, 13.0 and 20.0 mm (Nos. 7, 6 and 5 according to JIS A 5001) were used to make porous concrete. The strengths of porous concrete are found to be dependent on aggregate size. The rate of strength reduction of porous concrete with small aggregate size is found to be higher than that with larger aggregate size. At the same void ratio, the strength of porous concrete with large aggregate is larger than that with small aggregate. The general equations for porous concrete are related to compressive strength and void ratio for different binder strengths and aggregate sizes.
基金financially supported by the Advanced Research Project of Army Equipment Development (No. 301020803)the Key Research and Development Program of Jiangsu (No. BE 2015161)+3 种基金the Young Scientists Fund of the National Natural Science Foundation of China (No. 51605473)the Jiangsu Provincial Research Foundation for Basic Research, China (No. BK 20161476)the Science and Technology Planning Project of Jiangsu Province of China (No. BE 2015029)the Science and Technology Support Program of Jiangsu (Nos. BE 2014009-1, BE 2014009-2 and BE 2016010-3)
文摘Porous metal scaffolds play an important role in the orthopedic field, due to their wide applications in prostheses implantation. Some previous studies showed that the scaffolds with trabecular bone structure reconstructed via computed tomography had satisfactory biocompatibility. However, the reverse modeling scaffolds were inflexible for customized design. Therefore, a top-down designing biomimetic bone scaffold with favorable mechanical performances and cytocompatibility is urgently demanded for orthopedic implants. An emerging additive manufacturing technique, selective laser melting, was employed to fabricate the trabecular-like porous Ti-6Al-4 V scaffolds with varying irregularities(0.05-0.5) and porosities(48.83%–74.28%) designed through a novel Voronoi-Tessellation based method. Micro-computed tomography and scanning electron microscopy were used to characterize the scaffolds’ morphology.Quasi-static compression tests were performed to evaluate the scaffolds’ mechanical properties. The MG63 cells culture in vitro experiments, including adhesion, proliferation, and differentiation, were conducted to study the cytocompatibility of scaffolds. Compressive tests of scaffolds revealed an apparent elastic modulus range of 1.93–5.24 GPa and an ultimate strength ranging within 44.9–237.5 MPa, which were influenced by irregularity and porosity, and improved by heat treatment. Furthermore, the in vitro assay suggested that the original surface of the SLM-fabricated scaffolds was favorable for osteoblasts adhesion and migration because of micro scale pores and ravines. The trabecular-like porous scaffolds with full irregularity and higher porosity exhibited enhanced cells proliferation and osteoblast differentiation at earlier time, due to their preferable combination of small and large pores with various shapes. This study suggested that selective laser melting-derived Ti-6Al-4 V scaffold with the trabecular-like porous structure designed through Voronoi-Tessellation method, favorable mechanical performanc
基金National Basic Research Project of China (Grant No. 2002CB412705)Natural Sciences & Engineering Research Council of Canada (PGS-D2-2006) New Century Excellent Talents Program of the Ministry of Education of China (NCET-05-0215)
文摘The geometric features and the distribution properties of pores in rocks were in- vestigated by means of CT scanning tests of sandstones. The centroidal coordi- nates of pores, the statistic characterristics of pore distance, quantity, size and their probability density functions were formulated in this paper. The Monte Carlo method and the random number generating algorithm were employed to generate two series of random numbers with the desired statistic characteristics and prob- ability density functions upon which the random distribution of pore position, dis- tance and quantity were determined. A three-dimensional porous structural model of sandstone was constructed based on the FLAC3D program and the information of the pore position and distribution that the series of random numbers defined. On the basis of modelling, the Brazil split tests of rock discs were carried out to ex- amine the stress distribution, the pattern of element failure and the inosculation of failed elements. The simulation indicated that the proposed model was consistent with the realistic porous structure of rock in terms of their statistic properties of pores and geometric similarity. The built-up model disclosed the influence of pores on the stress distribution, failure mode of material elements and the inosculation of failed elements.