Novel amphiphilic polymers,cholesterol-end-capped poly(2-methacryloyloxyethyl phosphorylcholine)(CMPC) was specially designed as the drug delivery systems.Cytotoxicity of this novel amphiphiles was not observed as ind...Novel amphiphilic polymers,cholesterol-end-capped poly(2-methacryloyloxyethyl phosphorylcholine)(CMPC) was specially designed as the drug delivery systems.Cytotoxicity of this novel amphiphiles was not observed as indicated by cell culture.Anti-cancer drug adriamycin(ADR) was incorporated into the micelles by oil-in-water method.The release of ADR from the nanosphere continued over 7 d.The drug-loaded micelles could effectively restrain the growth of cancer cell.These results suggest that the drug loaded nanoparticles could be a good candidate for injectable drug delivery carrier.展开更多
To achieve targeted thrombolysis, a targeted delivery system of lumbrokinase(LK) was constructed using RGDfk-conjugated hybrid micelles. Based on the specific affinity of RGDfk to glycoprotein complex of GP Ⅱ b/Ⅲ a ...To achieve targeted thrombolysis, a targeted delivery system of lumbrokinase(LK) was constructed using RGDfk-conjugated hybrid micelles. Based on the specific affinity of RGDfk to glycoprotein complex of GP Ⅱ b/Ⅲ a expressed on the surface of membrane of activated platelet, LK loaded targeted micelles(LKTM) can be delivered to thrombus. The hybrid micelles were composed of polycaprolactone-block-poly(2-(dimethylamino) ethyl methacrylate)(PCL-PDMAEMA), methoxy polyethylene glycol-block-polycaprolactone(mPEG-PCL)and RGDfk conjugated polycaprolactone-block-polyethylene glycol(PCL-PEG-RGDfk). PCLPDMAEMA was synthesized via ring open polymerization(ROP) and atom transfer radical polymerization(ATRP). PCL-PEG-RGDfk was synthesized via ROP and carbodiimide chemistry. The prepared LKTM was characterized by dynamic light scattering(DLS) and transmission electron microscope(TEM). Colloidal stability assay showed the prepared LKTM was stable. Biocompatibility assay was performed to determine the safe concentration range of polymer. The assay of fluorescent distribution in vivo demonstrated that LKTM can be efficiently delivered to thrombi in vivo. Thrombolysis in vivo indicated the thrombolytic potency of LKTM was optimal in all groups. Notably, the laboratory mice treated with LKTM exhibited a significantly shorter tail bleeding time compared to those treated with LK or LK-loaded micelles without RGDfk, which suggested that the targeted delivery of LK using RGDfk-conjugated hybrid micelles effectively reduced the bleeding risk.展开更多
文摘Novel amphiphilic polymers,cholesterol-end-capped poly(2-methacryloyloxyethyl phosphorylcholine)(CMPC) was specially designed as the drug delivery systems.Cytotoxicity of this novel amphiphiles was not observed as indicated by cell culture.Anti-cancer drug adriamycin(ADR) was incorporated into the micelles by oil-in-water method.The release of ADR from the nanosphere continued over 7 d.The drug-loaded micelles could effectively restrain the growth of cancer cell.These results suggest that the drug loaded nanoparticles could be a good candidate for injectable drug delivery carrier.
基金financially supported by National Natural Science Foundation of China(No.81673363)
文摘To achieve targeted thrombolysis, a targeted delivery system of lumbrokinase(LK) was constructed using RGDfk-conjugated hybrid micelles. Based on the specific affinity of RGDfk to glycoprotein complex of GP Ⅱ b/Ⅲ a expressed on the surface of membrane of activated platelet, LK loaded targeted micelles(LKTM) can be delivered to thrombus. The hybrid micelles were composed of polycaprolactone-block-poly(2-(dimethylamino) ethyl methacrylate)(PCL-PDMAEMA), methoxy polyethylene glycol-block-polycaprolactone(mPEG-PCL)and RGDfk conjugated polycaprolactone-block-polyethylene glycol(PCL-PEG-RGDfk). PCLPDMAEMA was synthesized via ring open polymerization(ROP) and atom transfer radical polymerization(ATRP). PCL-PEG-RGDfk was synthesized via ROP and carbodiimide chemistry. The prepared LKTM was characterized by dynamic light scattering(DLS) and transmission electron microscope(TEM). Colloidal stability assay showed the prepared LKTM was stable. Biocompatibility assay was performed to determine the safe concentration range of polymer. The assay of fluorescent distribution in vivo demonstrated that LKTM can be efficiently delivered to thrombi in vivo. Thrombolysis in vivo indicated the thrombolytic potency of LKTM was optimal in all groups. Notably, the laboratory mice treated with LKTM exhibited a significantly shorter tail bleeding time compared to those treated with LK or LK-loaded micelles without RGDfk, which suggested that the targeted delivery of LK using RGDfk-conjugated hybrid micelles effectively reduced the bleeding risk.