A new model of porous electrodes based on the Gibbs free energy is developed, in which lithium-ion(Liion) diffusion, diffusion-induced stress(DIS), Butler–Volmer(BV) reaction kinetics, and size polydispersity of elec...A new model of porous electrodes based on the Gibbs free energy is developed, in which lithium-ion(Liion) diffusion, diffusion-induced stress(DIS), Butler–Volmer(BV) reaction kinetics, and size polydispersity of electrode particles are considered. The influence of BV reaction kinetics and concentration-dependent exchange current density(ECD) on concentration profile and DIS evolution are numerically investigated. BV reaction kinetics leads to a decrease in Li-ion concentration and DIS. In addition, concentrationdependent ECD results in a decrease in Li-ion concentration and an increase in DIS. Size polydispersity of electrode particles significantly affects the concentration profile and DIS.Optimal macroscopic state of charge(SOC) should consider the influence of the microscopic SOC values and mass fractions of differently sized particles.展开更多
The micromechanical and macromechanical behavior of idealized granular assemblies, made by linearly elastic, frictionless, polydisperse spheres, are studied in a periodic, triaxial box geometry, using the dis crete el...The micromechanical and macromechanical behavior of idealized granular assemblies, made by linearly elastic, frictionless, polydisperse spheres, are studied in a periodic, triaxial box geometry, using the dis crete element method. Emphasis is put on the effect of polydispersity under purely isotropic loading and unloading, deviatoric (volume conserving), and uniaxial compression paths. We show that scaled pressure, coordination number and fraction of rattlers behave in a very similar fashion as functions of volume fraction, irrespective of the deformation path applied. Interestingly, they show a systematic dependence on the deformation mode and polydispersity via the respective jamming volume fraction. This confirms that the concept of a single jamming point has to be rephrased to a range of variable jamming points, dependent on microstructure and history of the sample, making the jamming volume fraction a statevariable. This behavior is confirmed when a simplified constitutive model involving structural anisotropy is calibrated using the purely isotropic and deviatoric simulations. The basic model parameters are found to depend on the polydispersity of the sample through the different jamming volume fractions. The predictive power of the calibrated model is checked by comparison with an independent test, namely uniaxial compression. The important features of the uniaxial experiment are captured and a qualitative prediction for the evolution of stress and fabric is shown involving a "softening" regime in both stress and fabric stronger for the latter that was not prescribed into the model a priori.展开更多
We study the effect of particle size polydispersity(δ) on the melting transition(T*), local ordering, solid–liquid coexistence phase and dynamics of two-dimensional Lennard–Jones fluids up to moderate polydispersit...We study the effect of particle size polydispersity(δ) on the melting transition(T*), local ordering, solid–liquid coexistence phase and dynamics of two-dimensional Lennard–Jones fluids up to moderate polydispersity by means of computer simulations. The particle sizes are drawn at random from the Gaussian(G) and uniform(U) distribution functions.For these systems, we further consider two different kinds of particles, viz., particles having the same mass irrespective of size, and in the other case the mass of the particle scales with its size. It is observed that with increasing polydispersity,the value of T*initially increases due to improved packing efficiency(φ) followed by a decrease and terminates at δ ≈8%(U-system) and 14%(G-system) with no significant difference for both mass types. The interesting observation is that the particular value at which φ drops suddenly coincides with the peak of the heat capacity(CP) curve, indicating a transition. The quantification of local particle ordering through the hexatic order parameter(Q_6), Voronoi construction and pair correlation function reveals that the ordering decreases with increasing δ and T. Furthermore, the solid–liquid coexistence region for the G-system is shown to be comparatively wider in the T –δ plane phase diagram than that for the U system. Finally, the study of dynamics reveals that polydisperse systems relax faster compared to monodisperse systems;however, no significant qualitative differences, depending on the distribution type and mass polydispersity, are observed.展开更多
Network polymers in a rubber or a gel often contain non-uniform chain lengths. By means of dynamic Monte Carlo simulations of polymer mixtures with various compositions of two chain lengths, we investigated how the fa...Network polymers in a rubber or a gel often contain non-uniform chain lengths. By means of dynamic Monte Carlo simulations of polymer mixtures with various compositions of two chain lengths, we investigated how the factor of polydispersity influences their strain-induced crystal nucleation. Under a high temperature and a high strain rate, the stretching of both polymers revealed that crystal nucleation is mainly accelerated by the presence of short-chain polymers; nevertheless, both polymers join together in the nucleation process. Further analysis proved that crystal nucleation is initiated from those highly stretched short segments, which are rich on the short-chain polymers.展开更多
This study develops the kinetics for the slow monomer addition technique in the synthesis of hyperbranched polymers. Taking the conversion of monomer (x) as a variable, we derived the analytic expressions of molecular...This study develops the kinetics for the slow monomer addition technique in the synthesis of hyperbranched polymers. Taking the conversion of monomer (x) as a variable, we derived the analytic expressions of molecular size distribution function, average degree of polymerization, polydispersity index and degree of branching. These expressions are not only amenable to the polymerization with high monomer conversion, but also appropriate to describe the whole polymerization process. Comparison with the one-pot polymerization indicates that the slow monomer addition technique improves the molecular weight distribution and increases the degree of branching for the products obtained.展开更多
Based on a lognormal particle size distribution, this paper makes a model analysis on the polydispersity effects on the magnetization behaviour of diluted ferrofluids. Using a modified Langevin relationship for the lo...Based on a lognormal particle size distribution, this paper makes a model analysis on the polydispersity effects on the magnetization behaviour of diluted ferrofluids. Using a modified Langevin relationship for the lognormal dispersion, it first performs reduced calculations without material parameters. From the results, it is extrapolated that for the ferrofluid of lognormal polydispersion, in comparison with the corresponding monodispersion, the saturation magnetization is enhanced higher by the particle size distribution. It also indicates that in an equivalent magnetic field, the lognormally polydispersed ferrofluid is magnetically saturated faster than the corresponding monodispersion. Along the theoretical extrapolations, the polydispersity effects are evaluated for a typical ferrofluid of magnetite, with a dispersity of σ = 0.20. The results indicate that the lognormal polydispersity leads to a slight increase of the saturation magnetization, but a noticeable increase of the speed to reach the saturation value in an equivalent magnetic field.展开更多
Two-dimensional disordered granular assemblies composed of 2048 polydispersed frictionless disks are simulated using the discrete element method. The height of the first peak of the pair correlation function, gl, the ...Two-dimensional disordered granular assemblies composed of 2048 polydispersed frictionless disks are simulated using the discrete element method. The height of the first peak of the pair correlation function, gl, the local and global bond orientational parameters ψ6^1 and ψ6^g, and the fluctuations of these parameters decrease with increasing polydispersity s, implying the transition from a polycrystalline state to an amorphous state in the system. As s increases, the peak position of the boson peak aJBp shifts towards a lower frequency and the intensity of the boson peak D(ωBP)/ωBp increases, indicating that the position and the strength of the boson peak are controlled by the polydispersity of the system. Moreover, the inverse of the boson peak intensity ωBP/D(ωBP), the shear modulus G, and the basin curvature SIS all have a similar dependence on s, implying that the s dependence of the vibrational density of states at low frequencies likely originates from the s dependence of the basin curvature.展开更多
We detect strong force networks in a dense high-shear system and study their structure and stability in response to variations in the shearing rate. The presence of strong force networks, which usually have a heteroge...We detect strong force networks in a dense high-shear system and study their structure and stability in response to variations in the shearing rate. The presence of strong force networks, which usually have a heterogeneous structure, restricts particle movements and can impose non-local mechanisms of momentum transfer. We identify such networks in a dense high-shear system using a community detec- tion algorithm. Moreover, we explain the association between the mechanisms of momentum transfer and the structure, population, strength, and stability of the force networks by tracking the spatial and temporal evolution of the detected networks. In addition, we show that the assumption of a monodis- perse assembly of particles leads to an unrealistic enlargement of the force networks, underestimating both the rate of energy dissipation and the rate of mixing.展开更多
基金financial support by the National Natural Science Foundation of China (Grants 11472165, 11332005)
文摘A new model of porous electrodes based on the Gibbs free energy is developed, in which lithium-ion(Liion) diffusion, diffusion-induced stress(DIS), Butler–Volmer(BV) reaction kinetics, and size polydispersity of electrode particles are considered. The influence of BV reaction kinetics and concentration-dependent exchange current density(ECD) on concentration profile and DIS evolution are numerically investigated. BV reaction kinetics leads to a decrease in Li-ion concentration and DIS. In addition, concentrationdependent ECD results in a decrease in Li-ion concentration and an increase in DIS. Size polydispersity of electrode particles significantly affects the concentration profile and DIS.Optimal macroscopic state of charge(SOC) should consider the influence of the microscopic SOC values and mass fractions of differently sized particles.
基金financially supported by the European Union funded Marie Curie Initial Training Network,FP7(ITN-238577)
文摘The micromechanical and macromechanical behavior of idealized granular assemblies, made by linearly elastic, frictionless, polydisperse spheres, are studied in a periodic, triaxial box geometry, using the dis crete element method. Emphasis is put on the effect of polydispersity under purely isotropic loading and unloading, deviatoric (volume conserving), and uniaxial compression paths. We show that scaled pressure, coordination number and fraction of rattlers behave in a very similar fashion as functions of volume fraction, irrespective of the deformation path applied. Interestingly, they show a systematic dependence on the deformation mode and polydispersity via the respective jamming volume fraction. This confirms that the concept of a single jamming point has to be rephrased to a range of variable jamming points, dependent on microstructure and history of the sample, making the jamming volume fraction a statevariable. This behavior is confirmed when a simplified constitutive model involving structural anisotropy is calibrated using the purely isotropic and deviatoric simulations. The basic model parameters are found to depend on the polydispersity of the sample through the different jamming volume fractions. The predictive power of the calibrated model is checked by comparison with an independent test, namely uniaxial compression. The important features of the uniaxial experiment are captured and a qualitative prediction for the evolution of stress and fabric is shown involving a "softening" regime in both stress and fabric stronger for the latter that was not prescribed into the model a priori.
文摘We study the effect of particle size polydispersity(δ) on the melting transition(T*), local ordering, solid–liquid coexistence phase and dynamics of two-dimensional Lennard–Jones fluids up to moderate polydispersity by means of computer simulations. The particle sizes are drawn at random from the Gaussian(G) and uniform(U) distribution functions.For these systems, we further consider two different kinds of particles, viz., particles having the same mass irrespective of size, and in the other case the mass of the particle scales with its size. It is observed that with increasing polydispersity,the value of T*initially increases due to improved packing efficiency(φ) followed by a decrease and terminates at δ ≈8%(U-system) and 14%(G-system) with no significant difference for both mass types. The interesting observation is that the particular value at which φ drops suddenly coincides with the peak of the heat capacity(CP) curve, indicating a transition. The quantification of local particle ordering through the hexatic order parameter(Q_6), Voronoi construction and pair correlation function reveals that the ordering decreases with increasing δ and T. Furthermore, the solid–liquid coexistence region for the G-system is shown to be comparatively wider in the T –δ plane phase diagram than that for the U system. Finally, the study of dynamics reveals that polydisperse systems relax faster compared to monodisperse systems;however, no significant qualitative differences, depending on the distribution type and mass polydispersity, are observed.
基金financially supported by the National Natural Science Foundation of China(Nos.20825415 and 21274061)National Basic Research Program of China(No.2011CB606100)Program for Changjiang Scholars and Innovative Research Teams in Universities
文摘Network polymers in a rubber or a gel often contain non-uniform chain lengths. By means of dynamic Monte Carlo simulations of polymer mixtures with various compositions of two chain lengths, we investigated how the factor of polydispersity influences their strain-induced crystal nucleation. Under a high temperature and a high strain rate, the stretching of both polymers revealed that crystal nucleation is mainly accelerated by the presence of short-chain polymers; nevertheless, both polymers join together in the nucleation process. Further analysis proved that crystal nucleation is initiated from those highly stretched short segments, which are rich on the short-chain polymers.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20774038 & 50633010)
文摘This study develops the kinetics for the slow monomer addition technique in the synthesis of hyperbranched polymers. Taking the conversion of monomer (x) as a variable, we derived the analytic expressions of molecular size distribution function, average degree of polymerization, polydispersity index and degree of branching. These expressions are not only amenable to the polymerization with high monomer conversion, but also appropriate to describe the whole polymerization process. Comparison with the one-pot polymerization indicates that the slow monomer addition technique improves the molecular weight distribution and increases the degree of branching for the products obtained.
基金Project supported by the Shanghai Leading Academic Discipline Project of China (Grant No. B107)
文摘Based on a lognormal particle size distribution, this paper makes a model analysis on the polydispersity effects on the magnetization behaviour of diluted ferrofluids. Using a modified Langevin relationship for the lognormal dispersion, it first performs reduced calculations without material parameters. From the results, it is extrapolated that for the ferrofluid of lognormal polydispersion, in comparison with the corresponding monodispersion, the saturation magnetization is enhanced higher by the particle size distribution. It also indicates that in an equivalent magnetic field, the lognormally polydispersed ferrofluid is magnetically saturated faster than the corresponding monodispersion. Along the theoretical extrapolations, the polydispersity effects are evaluated for a typical ferrofluid of magnetite, with a dispersity of σ = 0.20. The results indicate that the lognormal polydispersity leads to a slight increase of the saturation magnetization, but a noticeable increase of the speed to reach the saturation value in an equivalent magnetic field.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272048,51239006,and 11034010)the European Commission MarieCurie Actions(Grant No.IRSES-294976)the National Basic Research Program of China(Grant No.2010CB731504)
文摘Two-dimensional disordered granular assemblies composed of 2048 polydispersed frictionless disks are simulated using the discrete element method. The height of the first peak of the pair correlation function, gl, the local and global bond orientational parameters ψ6^1 and ψ6^g, and the fluctuations of these parameters decrease with increasing polydispersity s, implying the transition from a polycrystalline state to an amorphous state in the system. As s increases, the peak position of the boson peak aJBp shifts towards a lower frequency and the intensity of the boson peak D(ωBP)/ωBp increases, indicating that the position and the strength of the boson peak are controlled by the polydispersity of the system. Moreover, the inverse of the boson peak intensity ωBP/D(ωBP), the shear modulus G, and the basin curvature SIS all have a similar dependence on s, implying that the s dependence of the vibrational density of states at low frequencies likely originates from the s dependence of the basin curvature.
文摘We detect strong force networks in a dense high-shear system and study their structure and stability in response to variations in the shearing rate. The presence of strong force networks, which usually have a heterogeneous structure, restricts particle movements and can impose non-local mechanisms of momentum transfer. We identify such networks in a dense high-shear system using a community detec- tion algorithm. Moreover, we explain the association between the mechanisms of momentum transfer and the structure, population, strength, and stability of the force networks by tracking the spatial and temporal evolution of the detected networks. In addition, we show that the assumption of a monodis- perse assembly of particles leads to an unrealistic enlargement of the force networks, underestimating both the rate of energy dissipation and the rate of mixing.