Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of str...Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of structures and compositions.Therefore,in this review,we first summarized the design factors of photocatalytic materials based on MOF from the perspective of"star"MOF.The modification strategies of MOFs-based photocatalysts were discussed to improve its photocatalytic activity and specific applications were summarized as well,including photocatalytic CO_(2)reduction,photocatalytic water splitting and photo-degradation of pollutants.Finally,the advantages and disadvantages of MOFs-based photocatalysts were discussed,the current challenges were highlighted,and suggestions for future research directions were proposed.展开更多
This study for the first time proposed an efficient microbial electrolyte/UV system for Methyl Orange decomposition. With an external applied voltage of 0.2 V and cathode aeration of20 mL/min, H2O2 could be in-situ ge...This study for the first time proposed an efficient microbial electrolyte/UV system for Methyl Orange decomposition. With an external applied voltage of 0.2 V and cathode aeration of20 mL/min, H2O2 could be in-situ generated from two-electron reduction of oxygen in cathode, reaching to 8.1 mg/L in 2 hr and continued to increase. The pollutant removal efficiency of approximate 94.7% was achieved at initial neutral pH, with the activation of ·OH in the presence of UV illumination. Although the nature of its guiding principles remain on the vista of practical exploration, this proof-of-concept study provides an alternative operation pattern of solar–microbial hybrid technology for future wastewater treatment from a basic but multidisciplinary view.展开更多
文摘Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of structures and compositions.Therefore,in this review,we first summarized the design factors of photocatalytic materials based on MOF from the perspective of"star"MOF.The modification strategies of MOFs-based photocatalysts were discussed to improve its photocatalytic activity and specific applications were summarized as well,including photocatalytic CO_(2)reduction,photocatalytic water splitting and photo-degradation of pollutants.Finally,the advantages and disadvantages of MOFs-based photocatalysts were discussed,the current challenges were highlighted,and suggestions for future research directions were proposed.
基金supported by the National Natural Science Foundation of China(21872104,51908408,21872163,and 22072090)the National Key Research and Development Program of China(2017YFB0602200,2020YFA0211000,and 2020YFA0211003)+3 种基金the Innovative Research Team of Tianjin Municipal Education Commission(TD13-5008)Tianjin Science and Technology Planning Project(21ZYQCSY00050)the support from the Natural Science Foundation of Tianjin for Distinguished Young Scholar(20JCJQJC00150)the support from the Tencent Foundation through the XPLORER PRIZE。
基金supported by the National Natural Science foundation of China(Nos.U1701243,51708184 and 51572089)Research Project of Guangdong Provincial Department of Science and Technology(No.2016B020240002)
文摘This study for the first time proposed an efficient microbial electrolyte/UV system for Methyl Orange decomposition. With an external applied voltage of 0.2 V and cathode aeration of20 mL/min, H2O2 could be in-situ generated from two-electron reduction of oxygen in cathode, reaching to 8.1 mg/L in 2 hr and continued to increase. The pollutant removal efficiency of approximate 94.7% was achieved at initial neutral pH, with the activation of ·OH in the presence of UV illumination. Although the nature of its guiding principles remain on the vista of practical exploration, this proof-of-concept study provides an alternative operation pattern of solar–microbial hybrid technology for future wastewater treatment from a basic but multidisciplinary view.