为了解决相干信号的极化平滑算法在小快拍数和低信噪比条件下估计性能较差的问题,结合四元数的正交特性和协方差张量方法,提出了一种基于张量四元数的极化平滑多重信号分类(Multiple Signal Classification,MUSIC)解相干算法。首先,为...为了解决相干信号的极化平滑算法在小快拍数和低信噪比条件下估计性能较差的问题,结合四元数的正交特性和协方差张量方法,提出了一种基于张量四元数的极化平滑多重信号分类(Multiple Signal Classification,MUSIC)解相干算法。首先,为了充分利用接收数据样本中的多维结构信息,建立了由张量四元数表示的柱面共形阵列极化平滑信号模型;其次,将平滑后的张量协方差矩阵通过高阶奇异值分解得到信号子空间;最后,通过极化秩亏MUSIC算法对入射相干信号分别进行二维波达方向(Direction of Arrival,DOA)估计和极化参数估计。仿真结果表明,该算法在小快拍数和低信噪比条件下具有更高的估计精度和分辨能力。展开更多
文摘为了解决相干信号的极化平滑算法在小快拍数和低信噪比条件下估计性能较差的问题,结合四元数的正交特性和协方差张量方法,提出了一种基于张量四元数的极化平滑多重信号分类(Multiple Signal Classification,MUSIC)解相干算法。首先,为了充分利用接收数据样本中的多维结构信息,建立了由张量四元数表示的柱面共形阵列极化平滑信号模型;其次,将平滑后的张量协方差矩阵通过高阶奇异值分解得到信号子空间;最后,通过极化秩亏MUSIC算法对入射相干信号分别进行二维波达方向(Direction of Arrival,DOA)估计和极化参数估计。仿真结果表明,该算法在小快拍数和低信噪比条件下具有更高的估计精度和分辨能力。