Automatic registration of unordered point clouds is the prerequisite forurban reconstruction. However, most of the existing technologies stillsuffer from some limitations. On one hand, most of them are sensitive tonoi...Automatic registration of unordered point clouds is the prerequisite forurban reconstruction. However, most of the existing technologies stillsuffer from some limitations. On one hand, most of them are sensitive tonoise and repetitive structures, which makes them infeasible for theregistration of large-scale point clouds. On the other hand, most of themdealing with point clouds with limited overlaps and unpredictablelocation. All these problems make it difficult for registration technology toobtain qualified results in outdoor point cloud. To overcome theselimitations, this paper presents a grid graph-based point cloud registration(GGR) algorithm to align pairwise scans. First, point cloud is divided into aset of 3D grids. We propose a voting strategy to measure the similaritybetween two grids based on feature descriptor, transforming thesuperficial correspondence into 3D grid expression. Next, a graphmatching is proposed to capture the spatial consistency from putativecorrespondences, and graph matching hierarchically refines thecorresponding grids until obtaining point-to-point correspondences.Comprehensive experiments demonstrated that the proposed algorithmobtains good performance in terms of successful registration rate, rotationerror, translation error, and outperformed the state-of-the-art approaches.展开更多
Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation ...Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation model between wavefront error and degree of movable lens freedom is established.Converting over-determined system to underdetermined system,the compensation is solved by Interior Point Method(IPM).The presented method is compared with direct solve the over-determined system.Then,other algorithm GA,EA and PS is compared with IPM.Simulation and experimental results show that the presented compensation method can obtained compensation with less residuals compared with direct solve the over-determined system.Also,the presented compensation method can reduce computation time and obtain results with less residuals compare with AGA,EA and PS.Moreover,after compensation,RMS of wavefront error of the experimental lithography projection objective decrease from 56.05 nm to 17.88 nm.展开更多
The layered 122 Zintl compounds have become an intriguing class of thermoelectric materials due to the promising electronic transport properties and inherently low thermal conductivity,showing the typical characterist...The layered 122 Zintl compounds have become an intriguing class of thermoelectric materials due to the promising electronic transport properties and inherently low thermal conductivity,showing the typical characteristics of"phonon-glass electron-crystal".Owing to the unprecedented performance tunability,the thermoelectric properties of the layered-structure compounds are completive with some traditional thermoelectric materials.Point defects involving vacancy,aliovalent doping and equivalent alloying atoms have been introduced to further enhance the thermoelectric properties.This review emphasizes the effects of various point defects on the thermoelectric parameters,and provides perspective on the strategies for increasing the thermoelectric figure of merit zT,which are believed to be applicable for improving the thermoelectric properties of many other compounds.展开更多
文摘Automatic registration of unordered point clouds is the prerequisite forurban reconstruction. However, most of the existing technologies stillsuffer from some limitations. On one hand, most of them are sensitive tonoise and repetitive structures, which makes them infeasible for theregistration of large-scale point clouds. On the other hand, most of themdealing with point clouds with limited overlaps and unpredictablelocation. All these problems make it difficult for registration technology toobtain qualified results in outdoor point cloud. To overcome theselimitations, this paper presents a grid graph-based point cloud registration(GGR) algorithm to align pairwise scans. First, point cloud is divided into aset of 3D grids. We propose a voting strategy to measure the similaritybetween two grids based on feature descriptor, transforming thesuperficial correspondence into 3D grid expression. Next, a graphmatching is proposed to capture the spatial consistency from putativecorrespondences, and graph matching hierarchically refines thecorresponding grids until obtaining point-to-point correspondences.Comprehensive experiments demonstrated that the proposed algorithmobtains good performance in terms of successful registration rate, rotationerror, translation error, and outperformed the state-of-the-art approaches.
文摘Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation model between wavefront error and degree of movable lens freedom is established.Converting over-determined system to underdetermined system,the compensation is solved by Interior Point Method(IPM).The presented method is compared with direct solve the over-determined system.Then,other algorithm GA,EA and PS is compared with IPM.Simulation and experimental results show that the presented compensation method can obtained compensation with less residuals compared with direct solve the over-determined system.Also,the presented compensation method can reduce computation time and obtain results with less residuals compare with AGA,EA and PS.Moreover,after compensation,RMS of wavefront error of the experimental lithography projection objective decrease from 56.05 nm to 17.88 nm.
基金Supported by the National Key Research and Development Program of China(2018YFA0702100)the National Natural Science Foundation of China(21771123,51772186 and 51632005)the Program of Introducing Talents of Discipline to Universities(D16002)。
文摘The layered 122 Zintl compounds have become an intriguing class of thermoelectric materials due to the promising electronic transport properties and inherently low thermal conductivity,showing the typical characteristics of"phonon-glass electron-crystal".Owing to the unprecedented performance tunability,the thermoelectric properties of the layered-structure compounds are completive with some traditional thermoelectric materials.Point defects involving vacancy,aliovalent doping and equivalent alloying atoms have been introduced to further enhance the thermoelectric properties.This review emphasizes the effects of various point defects on the thermoelectric parameters,and provides perspective on the strategies for increasing the thermoelectric figure of merit zT,which are believed to be applicable for improving the thermoelectric properties of many other compounds.