The results of time series sediment trap experiments in the South China Sea show that particulate organic carbon (POC) fluxes are influenced by the monsoons. The increase of productivity in the northern South China Se...The results of time series sediment trap experiments in the South China Sea show that particulate organic carbon (POC) fluxes are influenced by the monsoons. The increase of productivity in the northern South China Sea is mainly due to northeast monsoon while in the central South China Sea the influence of southwest monsoon becomes more prominent. The annual primary production and export production calculated based on POC fluxes are 53 0-63 4 and 10 32-12 93 gC·m -2·a -1, respectively. The enhancement of POC flux during monsoon period suggest that higher palaeoproductivity or organic carbon accumulation rate in glacial age in the South China Sea might be the result of strengthening of the monsoons.展开更多
Primary production, bacterial production, par-ticulate organic carbon fluxes and organic carbon burial rates were quantified during the summer period of 1999 in the Arctic Ocean via 14C uptake, 3H uptake, 234Th/238U d...Primary production, bacterial production, par-ticulate organic carbon fluxes and organic carbon burial rates were quantified during the summer period of 1999 in the Arctic Ocean via 14C uptake, 3H uptake, 234Th/238U disequilibrium and 210Pbex dating, respectively. The integrated primary production in the water column was as high as 197 mmolC/(m2·d) in the Chukchi shelf and was 3.8 mmolC/(m2·d) in the Canada Basin. These rates are higher than those reported previously. The ratios of bacterial production to primary production in the study region were higher than 0.5, indicating that microbial activity is not depressed but important in cold Arctic waters. 234Th/238U dis-equilibria were evident at the station in the Canada Basin. The presence of significant 234Th deficiency suggested that scavenging and removal processes are also important to bio-geochemical cycles of trace elements in the Arctic Ocean. Particulate organic carbon export flux was estimated to be 1.0 mmolC/(m2·d). Measurements of sediment展开更多
文摘The results of time series sediment trap experiments in the South China Sea show that particulate organic carbon (POC) fluxes are influenced by the monsoons. The increase of productivity in the northern South China Sea is mainly due to northeast monsoon while in the central South China Sea the influence of southwest monsoon becomes more prominent. The annual primary production and export production calculated based on POC fluxes are 53 0-63 4 and 10 32-12 93 gC·m -2·a -1, respectively. The enhancement of POC flux during monsoon period suggest that higher palaeoproductivity or organic carbon accumulation rate in glacial age in the South China Sea might be the result of strengthening of the monsoons.
基金This work was supported by the Chinese First Arctic Expedition Foundation the National Natural Science Foundation of China (Grant No. 40076024).
文摘Primary production, bacterial production, par-ticulate organic carbon fluxes and organic carbon burial rates were quantified during the summer period of 1999 in the Arctic Ocean via 14C uptake, 3H uptake, 234Th/238U disequilibrium and 210Pbex dating, respectively. The integrated primary production in the water column was as high as 197 mmolC/(m2·d) in the Chukchi shelf and was 3.8 mmolC/(m2·d) in the Canada Basin. These rates are higher than those reported previously. The ratios of bacterial production to primary production in the study region were higher than 0.5, indicating that microbial activity is not depressed but important in cold Arctic waters. 234Th/238U dis-equilibria were evident at the station in the Canada Basin. The presence of significant 234Th deficiency suggested that scavenging and removal processes are also important to bio-geochemical cycles of trace elements in the Arctic Ocean. Particulate organic carbon export flux was estimated to be 1.0 mmolC/(m2·d). Measurements of sediment