In this study, we have used four methods to investigate the start of the growing season (SGS) on the Tibetan Plateau (TP) from 1982 to 2012, using Normalized Difference Vegetation Index (NDVI) data obtained from...In this study, we have used four methods to investigate the start of the growing season (SGS) on the Tibetan Plateau (TP) from 1982 to 2012, using Normalized Difference Vegetation Index (NDVI) data obtained from Global Inventory Modeling and Mapping Studies (GIMSS, 1982-2006) and SPOT VEGETATION (SPOT-VGT, 1999-2012). SGS values esti- mated using the four methods show similar spatial patterns along latitudinal or altitudinal gradients, but with significant variations in the SGS dates. The largest discrepancies are mainly found in the regions with the highest or the lowest vegetation coverage. Between 1982 and 1998, the SGS values derived from the four methods all display an advancing trend, however, according to the more recent SPOT VGT data (1999-2012), there is no continu- ously advancing trend of SGS on the TP. Analysis of the correlation between the SGS values derived from GIMMS and SPOT between 1999 and 2006 demonstrates consistency in the tendency with regard both to the data sources and to the four analysis methods used. Com- pared with other methods, the greatest consistency between the in situ data and the SGS values retrieved is obtained with Method 3 (Threshold of NDVI ratio). To avoid error, in a vast region with diverse vegetation types and physical environments, it is critical to know the seasonal change characteristics of the different vegetation types, particularly in areas with sparse grassland or evergreen forest.展开更多
Long-term highly accurate surface soil moisture data of TP(Tibetan Plateau)are important to the research of Asian monsoon and global atmospheric circulation.However,due to the sparse in-situ networks,the lack of soil ...Long-term highly accurate surface soil moisture data of TP(Tibetan Plateau)are important to the research of Asian monsoon and global atmospheric circulation.However,due to the sparse in-situ networks,the lack of soil moisture observations has seriously hindered the progress of climate change researches of TP.Based on the Dual-Channel soil moisture retrieval algorithm and the satellite observation data of AMSR-E(Advanced Microwave Scanning Radiometer for EOS),we have produced the surface soil moisture data of TP from 2003 to 2010 and analyzed the seasonal characteristic of the soil moisture spatial distribution and its multi-year changing trend in area of TP.Compared to the in-situ observations,the accuracy of the soil moisture retrieved by the proposed algorithm is evaluated.The evaluation result shows that the new soil moisture product has a better accuracy in the TP region than the official product of AMSR-E.The spatial distribution of the annual mean values of soil moisture and the seasonal variations of the monthly-averaged soil moisture are analyzed.The results show that the soil moisture variations in space and time are consistent with the precipitation distribution and the water vapor transmission path in TP.Based on the new soil moisture product,we also analyzed the spatial distribution of the changing trend of multi-year soil moisture in TP.From the comparisons with the precipitation changing trend obtained from the meteorological observation sites in TP,we found that the spatial pattern of the changing trend of soil moisture coincides with the precipitation as a whole.展开更多
A correct assessment of the landslide susceptibility component is extremely useful for the diminution of associated potential risks to local economic development, particularly in regard to land use planning and soil c...A correct assessment of the landslide susceptibility component is extremely useful for the diminution of associated potential risks to local economic development, particularly in regard to land use planning and soil conservation. The purpose of the present study was to compare the usefulness of two methods, i.e., binary logistic regression(BLR) and analytical hierarchy process(AHP), for the assessment of landslide susceptibility over a 130-km^2 area in the Moldavian Plateau(eastern Romania) region, where landslides affect large areas and render them unsuitable for agriculture. A large scale inventory mapping of all types of landslides(covering 13.7% of the total area) was performed using orthophoto images, topographical maps, and field surveys. A geographic information system database was created, comprising the nine potential factors considered as most relevant for the landsliding process. Five factors(altitude, slope angle, slope aspect, surface lithology, and land use) were further selected for analysis through the application of a tolerance test and the stepwise filtering procedure of BLR. For each predictor, a corresponding raster layer was built and a dense grid of equally spaced points was generated, with an approximately equal number of points inside and outside the landslide area, in order to extract the values of the predictors from raster layers. Approximately half of the total number of points was used for model computation, while the other half was used for validation. Analytical hierarchy process was employed to derive factor weights, with several pair-wise comparison matrices being tested for this purpose. The class weights, on a scale of 0 to 1, were taken as normalized landslide densities. A comparison of results achieved through these two approaches showed that BLR was better suited for mapping landslide susceptibility, with 82.8% of the landslide area falling into the high and very high susceptibility classes. The susceptibility class separation using standard deviation was superior to either t展开更多
Using NCEP dataset we calculate the exchange of mass across the thermal tropopause by the Wei’s method from 1978 to 1997 over the Tibetan Plateau and its surroundings. We also calculate the annual variation of aeroso...Using NCEP dataset we calculate the exchange of mass across the thermal tropopause by the Wei’s method from 1978 to 1997 over the Tibetan Plateau and its surroundings. We also calculate the annual variation of aerosol and ozone of 100 hPa level with the monthly SAGE dataset from July 1988 to December 1993. Results indicate that (i) the mass from troposphere to stratosphere is magistral station in summer over the Tibetan Plateau and its surroundings. The air transport reaches the summit in midsummer with two large value centers, which lie in the north of Bengal Bay and southeastern Tibetan Plateau, respectively. A large value center, which lies over the Tibetan Plateau, is smaller than that aforementioned. In winter, the mass transport is from stratosphere to troposphere, and reaches the minimum in January. (ii) As far as the 19-year mean cross-tropopause mass exchange from June to September is concerned, the net mass transport is 14.84×l018 kg from troposphere to stratosphere. So the area from the展开更多
基金Strategic Priority Research Program of the Chinese Academy of Sciences, No.XDB03030500 National Natural Science Foundation of China, No.41201095+1 种基金 No.41171080 No.413711 20
文摘In this study, we have used four methods to investigate the start of the growing season (SGS) on the Tibetan Plateau (TP) from 1982 to 2012, using Normalized Difference Vegetation Index (NDVI) data obtained from Global Inventory Modeling and Mapping Studies (GIMSS, 1982-2006) and SPOT VEGETATION (SPOT-VGT, 1999-2012). SGS values esti- mated using the four methods show similar spatial patterns along latitudinal or altitudinal gradients, but with significant variations in the SGS dates. The largest discrepancies are mainly found in the regions with the highest or the lowest vegetation coverage. Between 1982 and 1998, the SGS values derived from the four methods all display an advancing trend, however, according to the more recent SPOT VGT data (1999-2012), there is no continu- ously advancing trend of SGS on the TP. Analysis of the correlation between the SGS values derived from GIMMS and SPOT between 1999 and 2006 demonstrates consistency in the tendency with regard both to the data sources and to the four analysis methods used. Com- pared with other methods, the greatest consistency between the in situ data and the SGS values retrieved is obtained with Method 3 (Threshold of NDVI ratio). To avoid error, in a vast region with diverse vegetation types and physical environments, it is critical to know the seasonal change characteristics of the different vegetation types, particularly in areas with sparse grassland or evergreen forest.
基金supported by the National High-tech R&D Program of China(Grant No.2012AA12A304)the National Natural Science Foundation of China(Grant No.40930530)
文摘Long-term highly accurate surface soil moisture data of TP(Tibetan Plateau)are important to the research of Asian monsoon and global atmospheric circulation.However,due to the sparse in-situ networks,the lack of soil moisture observations has seriously hindered the progress of climate change researches of TP.Based on the Dual-Channel soil moisture retrieval algorithm and the satellite observation data of AMSR-E(Advanced Microwave Scanning Radiometer for EOS),we have produced the surface soil moisture data of TP from 2003 to 2010 and analyzed the seasonal characteristic of the soil moisture spatial distribution and its multi-year changing trend in area of TP.Compared to the in-situ observations,the accuracy of the soil moisture retrieved by the proposed algorithm is evaluated.The evaluation result shows that the new soil moisture product has a better accuracy in the TP region than the official product of AMSR-E.The spatial distribution of the annual mean values of soil moisture and the seasonal variations of the monthly-averaged soil moisture are analyzed.The results show that the soil moisture variations in space and time are consistent with the precipitation distribution and the water vapor transmission path in TP.Based on the new soil moisture product,we also analyzed the spatial distribution of the changing trend of multi-year soil moisture in TP.From the comparisons with the precipitation changing trend obtained from the meteorological observation sites in TP,we found that the spatial pattern of the changing trend of soil moisture coincides with the precipitation as a whole.
文摘A correct assessment of the landslide susceptibility component is extremely useful for the diminution of associated potential risks to local economic development, particularly in regard to land use planning and soil conservation. The purpose of the present study was to compare the usefulness of two methods, i.e., binary logistic regression(BLR) and analytical hierarchy process(AHP), for the assessment of landslide susceptibility over a 130-km^2 area in the Moldavian Plateau(eastern Romania) region, where landslides affect large areas and render them unsuitable for agriculture. A large scale inventory mapping of all types of landslides(covering 13.7% of the total area) was performed using orthophoto images, topographical maps, and field surveys. A geographic information system database was created, comprising the nine potential factors considered as most relevant for the landsliding process. Five factors(altitude, slope angle, slope aspect, surface lithology, and land use) were further selected for analysis through the application of a tolerance test and the stepwise filtering procedure of BLR. For each predictor, a corresponding raster layer was built and a dense grid of equally spaced points was generated, with an approximately equal number of points inside and outside the landslide area, in order to extract the values of the predictors from raster layers. Approximately half of the total number of points was used for model computation, while the other half was used for validation. Analytical hierarchy process was employed to derive factor weights, with several pair-wise comparison matrices being tested for this purpose. The class weights, on a scale of 0 to 1, were taken as normalized landslide densities. A comparison of results achieved through these two approaches showed that BLR was better suited for mapping landslide susceptibility, with 82.8% of the landslide area falling into the high and very high susceptibility classes. The susceptibility class separation using standard deviation was superior to either t
文摘Using NCEP dataset we calculate the exchange of mass across the thermal tropopause by the Wei’s method from 1978 to 1997 over the Tibetan Plateau and its surroundings. We also calculate the annual variation of aerosol and ozone of 100 hPa level with the monthly SAGE dataset from July 1988 to December 1993. Results indicate that (i) the mass from troposphere to stratosphere is magistral station in summer over the Tibetan Plateau and its surroundings. The air transport reaches the summit in midsummer with two large value centers, which lie in the north of Bengal Bay and southeastern Tibetan Plateau, respectively. A large value center, which lies over the Tibetan Plateau, is smaller than that aforementioned. In winter, the mass transport is from stratosphere to troposphere, and reaches the minimum in January. (ii) As far as the 19-year mean cross-tropopause mass exchange from June to September is concerned, the net mass transport is 14.84×l018 kg from troposphere to stratosphere. So the area from the