研究黄土高原不同植被类型对土壤细菌微生物多样性的影响,对发挥土壤潜在肥力、了解土壤健康状况,实现植被的管理与可持续利用有着重要的意义.本文选取黄土高原4种草原植被与4种乔木林植被的表层土壤(0-5 cm)为研究对象,利用第二代高...研究黄土高原不同植被类型对土壤细菌微生物多样性的影响,对发挥土壤潜在肥力、了解土壤健康状况,实现植被的管理与可持续利用有着重要的意义.本文选取黄土高原4种草原植被与4种乔木林植被的表层土壤(0-5 cm)为研究对象,利用第二代高通量测序技术454 Hi Seq对其进行16S r DNA V1-V3可变区的高通量测序,分析土壤细菌的Alpha多样性、物种组成和丰度,并研究土壤性质对细菌群落结构的影响.结果表明,所测土壤样品中共检测到细菌的36个门,84个纲,187个目,优势菌门为变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、绿弯菌(Chloroflexi)、浮霉菌门(Planctomycetes),主要的优势菌纲为放线杆菌纲(Actinobacteria)、α-变形菌纲(α-Proteobacteria)、酸杆菌纲(Acidobacteria)、β-变形菌纲(β-Proteobacteria)、浮霉菌纲(Planctomycetacia).草原植被土壤分布更多的是Actinobacteria,森林植被土壤分布更多的是Proteobacteria.Proteobacteria与土壤有机质、全氮、全磷呈显著的相关性,其相对丰富度主要受土壤碳氮磷含量的限制.Actinobacteria的生长主要受土壤pH、水分和土壤有机质的影响.通过RDA分析发现,影响黄土高原土壤细菌分布的主要土壤因子是土壤水分,这些结果丰富了黄土高原土壤微生物多样性的理论知识,而且可为黄土高原植被恢复模式的选择提供理论依据.展开更多
Alpine cold ecosystem with permafrost environment is quite sensitive to climatic changes and the changes in permafrost can significantly affect the alpine ecosystem. The vegetation coverage, grassland biomass and soil...Alpine cold ecosystem with permafrost environment is quite sensitive to climatic changes and the changes in permafrost can significantly affect the alpine ecosystem. The vegetation coverage, grassland biomass and soil nutrient and texture are selected to indicate the regime of alpine cold ecosystems in the Qinghai-Tibet Plateau. The interactions between alpine ecosystem and permafrost were investigated with the depth of active layer, permafrost thickness and mean annual ground temperature (MAGTs). Based on the statistics model of GPTR for MAGTs and annual air temperatures, an analysis method was developed to analyze the impacts of permafrost changes on the alpine ecosystems. Under the climate change and human engineering activities, the permafrost change and its impacts on alpine ecosystems in the permafrost region between the Kunlun Mountains and the Tanggula Range of Qinghai-Tibet Plateau are studied in this paper. The results showed that the per- mafrost changes have a different influence on different alpine ecosystems. With the increase in the thickness of active layer, the vegetation cover and biomass of the alpine cold meadow exhibit a significant conic reduction, the soil organic matter content of the alpine cold meadow ecosystem shows an exponential decrease, and the surface soil materials become coarse and gravelly. The alpine cold steppe ecosystem, however, seems to have a relatively weak relation to the permafrost environment. Those relationships resulted in the fact that the distribution area of alpine cold meadow decreased by 7.98% and alpine cold swamp decreased by 28.11% under the permafrost environment degradation during recent 15 years. In the future 50 years the alpine cold meadow ecosystems in different geomorphologic units may have different responses to the changes of the permafrost under different climate warming conditions, among them the alpine cold meadow and swamp ecosystem located in the low mountain and plateau area will have a relatively serious degradation. Furthermore, from the angl展开更多
Sporopollen record in the Laojunmiao Section at Yumen in the Hexi Corridor foreland depression at the northern margin of the Tibetan Plateau revealed that during the period of 13.0―11.15 Ma the ecological environment...Sporopollen record in the Laojunmiao Section at Yumen in the Hexi Corridor foreland depression at the northern margin of the Tibetan Plateau revealed that during the period of 13.0―11.15 Ma the ecological environment of the Jiuxi Basin is characterized by steppe vegetation and a semi-moist climate. During 11.16―8.60 Ma prevailed forests of cypress and a still warmer, moister climate; steppe vegetation and dry climate began probably at about 8.6 Ma. Although aridification had been relaxed time and again during 8.40―6.93 Ma (forest-steppe, warm-semi-moist), 6.64―5.67 Ma (open-forest and steppe, warmer-semi-moist) and 5.42―4.96 Ma (steppe, semi-arid), the climate in the region became drier and drier in response to the fre- quent occurrence of aridity during 6.93―6.64 Ma (steppe, semi-arid), 5.67―5.42 Ma (de- sert-steppe, arid), 3.66―3.30 Ma (desert-steppe, arid) and 2.56―2.21 Ma (desert, arid). Perhaps the important findings of our study are the notable expansion of drought-enduring plants during 3.66―3.30 Ma and about 2.56 Ma and the replacement of vegetation by vast arid desert.展开更多
文摘研究黄土高原不同植被类型对土壤细菌微生物多样性的影响,对发挥土壤潜在肥力、了解土壤健康状况,实现植被的管理与可持续利用有着重要的意义.本文选取黄土高原4种草原植被与4种乔木林植被的表层土壤(0-5 cm)为研究对象,利用第二代高通量测序技术454 Hi Seq对其进行16S r DNA V1-V3可变区的高通量测序,分析土壤细菌的Alpha多样性、物种组成和丰度,并研究土壤性质对细菌群落结构的影响.结果表明,所测土壤样品中共检测到细菌的36个门,84个纲,187个目,优势菌门为变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、绿弯菌(Chloroflexi)、浮霉菌门(Planctomycetes),主要的优势菌纲为放线杆菌纲(Actinobacteria)、α-变形菌纲(α-Proteobacteria)、酸杆菌纲(Acidobacteria)、β-变形菌纲(β-Proteobacteria)、浮霉菌纲(Planctomycetacia).草原植被土壤分布更多的是Actinobacteria,森林植被土壤分布更多的是Proteobacteria.Proteobacteria与土壤有机质、全氮、全磷呈显著的相关性,其相对丰富度主要受土壤碳氮磷含量的限制.Actinobacteria的生长主要受土壤pH、水分和土壤有机质的影响.通过RDA分析发现,影响黄土高原土壤细菌分布的主要土壤因子是土壤水分,这些结果丰富了黄土高原土壤微生物多样性的理论知识,而且可为黄土高原植被恢复模式的选择提供理论依据.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.30270255 and No.90511003)the"Hundred Talents"Project of the Chinese Academy of Sciences under the leadership of Wang Genxuthe State Key Project(973)(Grant No.2003CB415201).
文摘Alpine cold ecosystem with permafrost environment is quite sensitive to climatic changes and the changes in permafrost can significantly affect the alpine ecosystem. The vegetation coverage, grassland biomass and soil nutrient and texture are selected to indicate the regime of alpine cold ecosystems in the Qinghai-Tibet Plateau. The interactions between alpine ecosystem and permafrost were investigated with the depth of active layer, permafrost thickness and mean annual ground temperature (MAGTs). Based on the statistics model of GPTR for MAGTs and annual air temperatures, an analysis method was developed to analyze the impacts of permafrost changes on the alpine ecosystems. Under the climate change and human engineering activities, the permafrost change and its impacts on alpine ecosystems in the permafrost region between the Kunlun Mountains and the Tanggula Range of Qinghai-Tibet Plateau are studied in this paper. The results showed that the per- mafrost changes have a different influence on different alpine ecosystems. With the increase in the thickness of active layer, the vegetation cover and biomass of the alpine cold meadow exhibit a significant conic reduction, the soil organic matter content of the alpine cold meadow ecosystem shows an exponential decrease, and the surface soil materials become coarse and gravelly. The alpine cold steppe ecosystem, however, seems to have a relatively weak relation to the permafrost environment. Those relationships resulted in the fact that the distribution area of alpine cold meadow decreased by 7.98% and alpine cold swamp decreased by 28.11% under the permafrost environment degradation during recent 15 years. In the future 50 years the alpine cold meadow ecosystems in different geomorphologic units may have different responses to the changes of the permafrost under different climate warming conditions, among them the alpine cold meadow and swamp ecosystem located in the low mountain and plateau area will have a relatively serious degradation. Furthermore, from the angl
基金supported by the Key Basic Research and Development Plan(Grant No.G1998040809)the National Natural Sci ence Foundation of China(Grant No.40171094)the Hundred Talents Program of the Chinese Acadeny of Sciences(Renjiaozi[2000]05).
文摘Sporopollen record in the Laojunmiao Section at Yumen in the Hexi Corridor foreland depression at the northern margin of the Tibetan Plateau revealed that during the period of 13.0―11.15 Ma the ecological environment of the Jiuxi Basin is characterized by steppe vegetation and a semi-moist climate. During 11.16―8.60 Ma prevailed forests of cypress and a still warmer, moister climate; steppe vegetation and dry climate began probably at about 8.6 Ma. Although aridification had been relaxed time and again during 8.40―6.93 Ma (forest-steppe, warm-semi-moist), 6.64―5.67 Ma (open-forest and steppe, warmer-semi-moist) and 5.42―4.96 Ma (steppe, semi-arid), the climate in the region became drier and drier in response to the fre- quent occurrence of aridity during 6.93―6.64 Ma (steppe, semi-arid), 5.67―5.42 Ma (de- sert-steppe, arid), 3.66―3.30 Ma (desert-steppe, arid) and 2.56―2.21 Ma (desert, arid). Perhaps the important findings of our study are the notable expansion of drought-enduring plants during 3.66―3.30 Ma and about 2.56 Ma and the replacement of vegetation by vast arid desert.