An increasing number of drivers are relying on digital map navigation systems in vehicles or mobile phones to select optimal driving routes in order to save time and improve safety. In the near future, digital map nav...An increasing number of drivers are relying on digital map navigation systems in vehicles or mobile phones to select optimal driving routes in order to save time and improve safety. In the near future, digital map navigation systems are expected to play more important roles in transportation systems. In order to extend current navigation systems to more applications, two fundamental problems must be resolved: the lane-level map model and lane-level route planning. This study proposes solutions to both problems. The current limitation of the lane-level map model is not its accuracy but its flexibility;this study proposes a novel seven-layer map structure, called as Tsinghua map model, which is able to support autonomous driving in a flexible and efficient way. For lane-level route planning, we propose a hierarchical route-searching algorithm to accelerate the planning process, even in the presence of complicated lane networks. In addition, we model the travel costs allocated for lane-level road networks by analyzing vehicle maneuvers in traversing lanes, changing lanes, and turning at intersections. Tests were performed on both a grid network and a real lane-level road network to demonstrate the validity and efficiency of the proposed algorithm.展开更多
A fuzzy multi-objective bi-level optimization problem is proposed to model the planning of energy storage system(ESS) in active distribution systems(ADS). The proposed model enables us to take into account how optimal...A fuzzy multi-objective bi-level optimization problem is proposed to model the planning of energy storage system(ESS) in active distribution systems(ADS). The proposed model enables us to take into account how optimal operation strategy of ESS in the lower level can affect and be affected by the optimal allocation of ESS in the upper level. The power characteristic model of micro-grid(MG)and typical daily scenarios are established to take full consideration of time-variable nature of renewable energy generations(REGs) and load demand while easing the burden of computation. To solve the bi-level mixed integer problem, a multi-subgroup hierarchical chaos hybrid algorithm is introduced based on differential evolution(DE) and particle swarm optimization(PSO). The modified IEEE-33 bus benchmark distribution system is utilized to investigate the availability and effectiveness of the proposed model and the hybrid algorithm. Results indicate that the planningmodel gives an adequate consideration to the optimal operation and different roles of ESS, and has the advantages of objectiveness and reasonableness.展开更多
基金the National Key Research and Development Program of China (2018YFB0105000)the National Natural Science Foundation of China (61773234 and U1864203)+2 种基金the Project of Tsinghua University and Toyota Joint Research Center for AI Technology of Automated Vehicle (TT2018-02)the International Science and Technology Cooperation Program of China (2016YFE0102200)the software developed in the Beijing Municipal Science and Technology Program (D171100005117001 and Z181100005918001).
文摘An increasing number of drivers are relying on digital map navigation systems in vehicles or mobile phones to select optimal driving routes in order to save time and improve safety. In the near future, digital map navigation systems are expected to play more important roles in transportation systems. In order to extend current navigation systems to more applications, two fundamental problems must be resolved: the lane-level map model and lane-level route planning. This study proposes solutions to both problems. The current limitation of the lane-level map model is not its accuracy but its flexibility;this study proposes a novel seven-layer map structure, called as Tsinghua map model, which is able to support autonomous driving in a flexible and efficient way. For lane-level route planning, we propose a hierarchical route-searching algorithm to accelerate the planning process, even in the presence of complicated lane networks. In addition, we model the travel costs allocated for lane-level road networks by analyzing vehicle maneuvers in traversing lanes, changing lanes, and turning at intersections. Tests were performed on both a grid network and a real lane-level road network to demonstrate the validity and efficiency of the proposed algorithm.
基金supported by Application Technology Research and Engineering Demonstration Program of National Energy Administration in China (No. NY20150301)
文摘A fuzzy multi-objective bi-level optimization problem is proposed to model the planning of energy storage system(ESS) in active distribution systems(ADS). The proposed model enables us to take into account how optimal operation strategy of ESS in the lower level can affect and be affected by the optimal allocation of ESS in the upper level. The power characteristic model of micro-grid(MG)and typical daily scenarios are established to take full consideration of time-variable nature of renewable energy generations(REGs) and load demand while easing the burden of computation. To solve the bi-level mixed integer problem, a multi-subgroup hierarchical chaos hybrid algorithm is introduced based on differential evolution(DE) and particle swarm optimization(PSO). The modified IEEE-33 bus benchmark distribution system is utilized to investigate the availability and effectiveness of the proposed model and the hybrid algorithm. Results indicate that the planningmodel gives an adequate consideration to the optimal operation and different roles of ESS, and has the advantages of objectiveness and reasonableness.