The self-piercing riveting (SPR) process was used to join 2.0-mm-thick aluminum alloy 6061-T6 and 1.2-mm-thick mild steel SPFC340 sheets. SPR joints produced with a conventional flat-bottom die and conicalsection dies...The self-piercing riveting (SPR) process was used to join 2.0-mm-thick aluminum alloy 6061-T6 and 1.2-mm-thick mild steel SPFC340 sheets. SPR joints produced with a conventional flat-bottom die and conicalsection dies were investigated both experimentally and numerically. Lap shear tests were conducted under quasistatic conditions to evaluate the load-carrying capability of these SPR joints. The effect of variation in die geometry (such as variation in the die groove shape, cone height, and die radius) on the main mechanical response of the joints, namely the peak load and energy absorption, was discussed. The results showed that SPR joints produced with the conical-section dies exhibited a failure mode similar to those produced with a conventional die. All the joints failed by tearing of the top steel sheet. Cracks that occurred in the bottom aluminum alloy 6061-T6 sheet around the rivet leg were a result of tangential tensile stress. The cone height of a conical-section die is the most important parameter affecting the surface quality of Al/steel SPR joints. Conical-section dies with a moderate convex can ensure a good surface quality during the SPR process. In addition, SPR joints with single conical-section die allow higher tensile strength and energy absorption compared to those with double conical-section die.展开更多
This paper analyses the geometrical analogue rules of explosively formed projectile (EFP) penetrating armours with the help of similarity theory, and establishes EFP penetrating armour simulation law. Based on the si...This paper analyses the geometrical analogue rules of explosively formed projectile (EFP) penetrating armours with the help of similarity theory, and establishes EFP penetrating armour simulation law. Based on the simulation law established here, prototype experiments and model experiments with the simulation ratio of 1.33 are designed, and the penetrating armour experiments with 45 # carbon steel plates are separately conducted. By means of data processing of experimental results, it is concluded that EFP penetrating armour simulation law established is tenable.展开更多
A recently developed friction self-piercing riveting(F-SPR)technique based on the combination of fric-tion stir processing and riveting has been reported to possess both solid-state bonding and mechanical fastening ch...A recently developed friction self-piercing riveting(F-SPR)technique based on the combination of fric-tion stir processing and riveting has been reported to possess both solid-state bonding and mechanical fastening characteristics.However,there is still a lack of quantitative understanding of the hybrid en-hancement mechanism,hindering its engineering application.To fill in this gap,the current research investigated the microstructure evolution,microhardness distribution,and miniature-tensile performance of the aluminum alloy AA7075-T6 F-SPR joints by experiments.An accurate numerical simulation model was established to quantitatively evaluate the individual contributions of microstructure,local bonding strength,and macro interlocking to the performance of the joint,which could well explain the experi-mental results.It was found that due to the friction stirring of the rivet,solid-state bonding driven by dynamic recrystallization is realized between the trapped aluminum in the rivet cavity and the bottom aluminum sheet.The solid-state bonding zone has 75%yield strength,81%ultimate tensile strength,and 106%elongation compared to the base material.This solid-state bonding enables the internal interlock-ing between the trapped aluminum and the rivet to withstand the additional load,which forms a novel dual-interlock fastening mechanism and increases the peak cross-tension force by 14.3%compared to the single-interlock joint.展开更多
This paper presented the results of an experimental investigation into the resistance performance of a wave-piercing trimaran with three alternative side hull forms,including asymmetric inboard,asymmetric outboard,and...This paper presented the results of an experimental investigation into the resistance performance of a wave-piercing trimaran with three alternative side hull forms,including asymmetric inboard,asymmetric outboard,and symmetric at various stagger/separation positions.Model tests were carried out at the National Iranian Marine Laboratory(NIMALA)towing tank using a scale model of a trimaran at the Froude numbers from 0.225 to 0.60.Results showed that by moving the side hulls to the forward of the main hull transom,the total resistance coefficient of trimaran decreased.Findings,furthermore,demonstrated that the symmetry shape of the side hull had the best performance on total resistance among three side hull forms.Results of this study are useful for selecting the side hull configuration from the resistance viewpoint.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 51774097, 51705081)Key Project of the Youth Natural Science Fund of Fujian Provincial University (Grant No. JZ160417) for their kindly financial supports of this workJiang-Hua Deng is grateful for the financial support from Program for New Century Excellent Talents in Fujian Province University (NCETFJ).
文摘The self-piercing riveting (SPR) process was used to join 2.0-mm-thick aluminum alloy 6061-T6 and 1.2-mm-thick mild steel SPFC340 sheets. SPR joints produced with a conventional flat-bottom die and conicalsection dies were investigated both experimentally and numerically. Lap shear tests were conducted under quasistatic conditions to evaluate the load-carrying capability of these SPR joints. The effect of variation in die geometry (such as variation in the die groove shape, cone height, and die radius) on the main mechanical response of the joints, namely the peak load and energy absorption, was discussed. The results showed that SPR joints produced with the conical-section dies exhibited a failure mode similar to those produced with a conventional die. All the joints failed by tearing of the top steel sheet. Cracks that occurred in the bottom aluminum alloy 6061-T6 sheet around the rivet leg were a result of tangential tensile stress. The cone height of a conical-section die is the most important parameter affecting the surface quality of Al/steel SPR joints. Conical-section dies with a moderate convex can ensure a good surface quality during the SPR process. In addition, SPR joints with single conical-section die allow higher tensile strength and energy absorption compared to those with double conical-section die.
文摘This paper analyses the geometrical analogue rules of explosively formed projectile (EFP) penetrating armours with the help of similarity theory, and establishes EFP penetrating armour simulation law. Based on the simulation law established here, prototype experiments and model experiments with the simulation ratio of 1.33 are designed, and the penetrating armour experiments with 45 # carbon steel plates are separately conducted. By means of data processing of experimental results, it is concluded that EFP penetrating armour simulation law established is tenable.
基金support of the National Natural Science Foundation of China(Grant Nos.52025058 and U1764251)the State Key Laboratory of Mechan-ical System and Vibration(Grant No.MSVZD202111)+1 种基金the Japan Society for the Promotion of Science(JSPS)KAKENHI(Grant No.21K14439)Shanghai Jiao Tong University.
文摘A recently developed friction self-piercing riveting(F-SPR)technique based on the combination of fric-tion stir processing and riveting has been reported to possess both solid-state bonding and mechanical fastening characteristics.However,there is still a lack of quantitative understanding of the hybrid en-hancement mechanism,hindering its engineering application.To fill in this gap,the current research investigated the microstructure evolution,microhardness distribution,and miniature-tensile performance of the aluminum alloy AA7075-T6 F-SPR joints by experiments.An accurate numerical simulation model was established to quantitatively evaluate the individual contributions of microstructure,local bonding strength,and macro interlocking to the performance of the joint,which could well explain the experi-mental results.It was found that due to the friction stirring of the rivet,solid-state bonding driven by dynamic recrystallization is realized between the trapped aluminum in the rivet cavity and the bottom aluminum sheet.The solid-state bonding zone has 75%yield strength,81%ultimate tensile strength,and 106%elongation compared to the base material.This solid-state bonding enables the internal interlock-ing between the trapped aluminum and the rivet to withstand the additional load,which forms a novel dual-interlock fastening mechanism and increases the peak cross-tension force by 14.3%compared to the single-interlock joint.
文摘This paper presented the results of an experimental investigation into the resistance performance of a wave-piercing trimaran with three alternative side hull forms,including asymmetric inboard,asymmetric outboard,and symmetric at various stagger/separation positions.Model tests were carried out at the National Iranian Marine Laboratory(NIMALA)towing tank using a scale model of a trimaran at the Froude numbers from 0.225 to 0.60.Results showed that by moving the side hulls to the forward of the main hull transom,the total resistance coefficient of trimaran decreased.Findings,furthermore,demonstrated that the symmetry shape of the side hull had the best performance on total resistance among three side hull forms.Results of this study are useful for selecting the side hull configuration from the resistance viewpoint.