Ca1-xTiO3 :xEu^3+ nanoparticles (NPs) with the size ranging from 27 nm to 135 nm were prepared by means of a chemical co-precipitation method. The structural and optical properties of the NPs were investigated, an...Ca1-xTiO3 :xEu^3+ nanoparticles (NPs) with the size ranging from 27 nm to 135 nm were prepared by means of a chemical co-precipitation method. The structural and optical properties of the NPs were investigated, and the influence of Eu doping content and sintering temperature on the photoluminescence of the Ca1-xTiO3 :xEu^3+ NPs were examined. An obvious red emission band centered at 615 nm were observed under the excitation with 395 nm for the Ca1-xTiO3 :xEu^3+ NPs. X-ray photoelectron spectroscopy analyses suggest that Eu^3+ is incorporated into not only the Ca-site, but also Ti-site of CaTiO3 crystal lattice. Our study shows the promise of the Ca1-xTiO3 :xEu^3+ NPs as a red nanophosphor.展开更多
基金financially supported by Yantai Shied Advanced Materials Co.,Ltd
文摘Ca1-xTiO3 :xEu^3+ nanoparticles (NPs) with the size ranging from 27 nm to 135 nm were prepared by means of a chemical co-precipitation method. The structural and optical properties of the NPs were investigated, and the influence of Eu doping content and sintering temperature on the photoluminescence of the Ca1-xTiO3 :xEu^3+ NPs were examined. An obvious red emission band centered at 615 nm were observed under the excitation with 395 nm for the Ca1-xTiO3 :xEu^3+ NPs. X-ray photoelectron spectroscopy analyses suggest that Eu^3+ is incorporated into not only the Ca-site, but also Ti-site of CaTiO3 crystal lattice. Our study shows the promise of the Ca1-xTiO3 :xEu^3+ NPs as a red nanophosphor.