Based on the review of phosphorus recycling research and the methods in determining phosphorus forms in agroecosystems,the paper proposed several suggestions on the approaches of phosphorus recycling study in the future.
Recycling and composting of organic materials such as animal waste, crop residues and green manures has a long tradition in China. In the past, the application of organic manures guaranteed a high return of organic ma...Recycling and composting of organic materials such as animal waste, crop residues and green manures has a long tradition in China. In the past, the application of organic manures guaranteed a high return of organic materials and plant mineral nutrients and thus maintained soil fertility and crop yield. As a result of rapid economic development coupled with the increasing urbanization and labour costs, the recycling rate of organic materials in Chinese agriculture has dramatically declined during the last two decades, in particular in the more developed eastern and southeastern provinces of China. Improper handling and storage of the organic wastes is causing severe air and water pollution. Because farmers are using increasing amounts of mineral fertilizer, only 47% of the cropland is still receiving organic manure, which accounted for 18% of N, 28% of P and 75% of K in the total nutrient input in 2000. Nowadays, the average proportion of nutrients (N+P+K) supplemented by organic manure in Chinese cropland is only 35% of the total amount of nutrients from both inorganic and organic sources. In China, one of the major causes is the increasing de-coupling of animal and plant production. This is occurring at a time when 're-coupling' is partly being considered in Western countries as a means to improve soil fertility and reduce pollution from animal husbandry. Re-coupling of modern animal and plant production is urgently needed in China. A comprehensive plan to develop intensive animal husbandry while taking into account the environmental impact of liquid and gaseous emissions and the nutrient requirements of the crops as well as the organic carbon requirements of the soil are absolutely necessary. As a consequence of a stronger consideration of ecological aspects in agriculture, a range of environmental standards has been issued and various legal initiatives are being taken in China. Their enforcement should be strictly monitored.展开更多
The Ordovician-Silurian transition(OST)hosted profound and frequent changes in the atmospheric-terres trial-oceanic-climatic system(ATOCS).Previous studies have found contrasting stages for such changes,primarily base...The Ordovician-Silurian transition(OST)hosted profound and frequent changes in the atmospheric-terres trial-oceanic-climatic system(ATOCS).Previous studies have found contrasting stages for such changes,primarily based on hiatus-interrupted sections.However,the dominant driving factors and mechanisms reconciling such frequent changes remain controversial.Mercury isotopes,which undergo both massdependent and mass-independent fractionation,can provide critical insights into the deep-time ATOCSs,especially for those impacted by large igneous provinces(LIPs)events.Here,we build a highresolution multi-proxy record of Hg(concentrations and isotopic compositions)combined with organic carbon isotopes(δ^(13)Corg)and whole-rock geochemical data(including trace elements and phosphorus)from continuous cores in the Yangtze Platform,South China.Our data,combined with reported ones,indicate the occurrence of LIP eruptions against localized volcanism,and four successive,yet contrasting stages of ATOCSs during the OST.Moreover,we identified the coupling between two-pulse LIP magmatism and extreme ATOCSs,each with special pCO_(2),weathering rate,primary productivity,redox condition,climatic mode,and biotic evolution.For stage I,the first pulse of LIP magmatism triggered global warming,enhanced terrestrial weathering,oceanic acidification,eutrophication,anoxia,P recycling,and thereby widespread deposition of black shales.During stage II,the Hirnantian glaciation and oxygenation arose from the intense chemical weathering and black shale deposition of stage I;slashed terrestrial weathering and oceanic oxygenation facilitated CO_(2) accumulation.In stage III,another pulse of LIP magmatism triggered the de-glaciation,and the ATOCS was largely similar to that of stage I.This led to another round of oxygenation and positive d13Corg excursion in stage IV.Compared with the environmental pressure by the peculiar ATOCS of each stage,their transitions might have been more devastating in triggering the prolonged Late Ordovician Mass Extinctio展开更多
The optimization of volume ratio(V_(An)/V_(A)/V_(0))and nitrate recycling ratio(R)in a two-sludge denitrifying phosphorus removal(DPR)process of Anaerobic Anoxic Oxic-Moving Bed Biofilm Reactor(A^(2)/O-MBBR)was invest...The optimization of volume ratio(V_(An)/V_(A)/V_(0))and nitrate recycling ratio(R)in a two-sludge denitrifying phosphorus removal(DPR)process of Anaerobic Anoxic Oxic-Moving Bed Biofilm Reactor(A^(2)/O-MBBR)was investigated.The results showed that prolonged anaerobic retention time(HRT An:1.25→3.75 hr)exerted favorable effect on chemical oxygen demand(COD)removal(57.26%→73.54%),poly-β-hydroxyalkanoates(PHA)synthesis(105.70→138.12 mg COD/L)and PO_(4)^(3-)release(22.3→38.9 mg/L).However,anoxic retention time(HRT A)and R exhibited positive correlation with PHA utilization(43.87%-81.34%)and denitrifying phosphorus removal(DPR)potential(NO_(3)-/PO^(3-)_(4):0.57-1.34 mg/mg),leading to dramatical TN removal variations from 68.86%to 81.28%.Under the V An/V A/V O ratio of 2:6:0,sludge loss deteriorated nutrient removals but the sludge bioactivity quickly recovered when the oxic zone was recovered.The sludge characteristic and microstructure gradually transformed under the dissolved oxygen(DO)control(1.0-1.5→1.5-2.0 mg/L),in terms of sludge volume index(SVI:194→57 m L/g VSS),median-particle-size(D 50:99.6→300.5μm),extracellular polymeric substances(EPS)(105.62→226.18 mg/g VSS)and proteins/polysaccharides(PN/PS)ratio(1.52→3.46).Fluorescence in situ hybridization(FISH)results showed that phosphorus accumulation organisms(PAOs)(mainly Cluster I of Accumulibacter,contribution ratio:91.79%-94.10%)dominated the superior DPR performance,while glycogen accumulating organisms(GAOs)(mainly Competibacter,contribution ratio:82.61%-86.89%)was responsible for deteriorative TN and PO_(4)^(3-)removals.The optimal HRT A and R assembled around 5-6.5 hr and 300%-400%based on the PHA utilization and DRP performance,and the oxic zones also contributed to PO_(4)^(3-)removal although it showed low dependence on DO concentration and oxic retention time(HRT_(0)).展开更多
A laboratory-scale reaction-crystallization process of struvite synthesis from diluted water solution of Mg^2+, NH^+ 4 and PO3- ions was studied. The research covered the tests of two original constructions of conti...A laboratory-scale reaction-crystallization process of struvite synthesis from diluted water solution of Mg^2+, NH^+ 4 and PO3- ions was studied. The research covered the tests of two original constructions of continuous jet-pump Draft Tube Magma (DTM)-type crystallizers with internal circulation of suspension (upward/downward). Interactions between constructional, hydrodynamic and kinetic factors were established and discussed. Nucleation and linear growth rates of struvite crystals were calculated on the basis of population density distribution. Kinetic model of idealized Mixed Suspension Mixed Product Removal (MSMPR) crystallizer considering the size-dependent growth mechanism was applied (Rojkowski hyperbolic equation). For comparison purposes the kinetic data corre- sponded to a simpler, continuous draft tube-type crystallizer equipped with propeller agitator were analyzed. It was concluded that crystal product of larger size was withdrawn from the jet-pump DTM crystallizer of the descending flow of suspension in a mixing chamber.展开更多
The studies show that in the whole community, P is deficient, and N and K are basically balanced. N, P and K are accumulated in plant tissues and litters, but depleted in soil. N and P contents in surface soil(0—20 ...The studies show that in the whole community, P is deficient, and N and K are basically balanced. N, P and K are accumulated in plant tissues and litters, but depleted in soil. N and P contents in surface soil(0—20 cm) are the main factors affecting crop growth, and P contents in 20 80 cm soil layer is the major affecting Paulownia elongata growth. The absorption coefficients of N, P and K in the communities are 0 078, 0 014 and 0 052 respectively, their utilization coefficients are 0 95, 0 90 and 0 94, and the recycling coefficients are 0 042, 0 05 and 0 063 respectively.展开更多
文摘Based on the review of phosphorus recycling research and the methods in determining phosphorus forms in agroecosystems,the paper proposed several suggestions on the approaches of phosphorus recycling study in the future.
基金the National Natural Science Foundation of China (Grants No.30270787 &30390081) the Sino-German Center for Research Promotion (NSFC-DFG) in Beijing.
文摘Recycling and composting of organic materials such as animal waste, crop residues and green manures has a long tradition in China. In the past, the application of organic manures guaranteed a high return of organic materials and plant mineral nutrients and thus maintained soil fertility and crop yield. As a result of rapid economic development coupled with the increasing urbanization and labour costs, the recycling rate of organic materials in Chinese agriculture has dramatically declined during the last two decades, in particular in the more developed eastern and southeastern provinces of China. Improper handling and storage of the organic wastes is causing severe air and water pollution. Because farmers are using increasing amounts of mineral fertilizer, only 47% of the cropland is still receiving organic manure, which accounted for 18% of N, 28% of P and 75% of K in the total nutrient input in 2000. Nowadays, the average proportion of nutrients (N+P+K) supplemented by organic manure in Chinese cropland is only 35% of the total amount of nutrients from both inorganic and organic sources. In China, one of the major causes is the increasing de-coupling of animal and plant production. This is occurring at a time when 're-coupling' is partly being considered in Western countries as a means to improve soil fertility and reduce pollution from animal husbandry. Re-coupling of modern animal and plant production is urgently needed in China. A comprehensive plan to develop intensive animal husbandry while taking into account the environmental impact of liquid and gaseous emissions and the nutrient requirements of the crops as well as the organic carbon requirements of the soil are absolutely necessary. As a consequence of a stronger consideration of ecological aspects in agriculture, a range of environmental standards has been issued and various legal initiatives are being taken in China. Their enforcement should be strictly monitored.
基金supported by the National Natural Science Foundation of China(41873047,41372123)National Science and Technology Major Project(2016ZX05034)Geological Survey Program of China(DD20190085)。
文摘The Ordovician-Silurian transition(OST)hosted profound and frequent changes in the atmospheric-terres trial-oceanic-climatic system(ATOCS).Previous studies have found contrasting stages for such changes,primarily based on hiatus-interrupted sections.However,the dominant driving factors and mechanisms reconciling such frequent changes remain controversial.Mercury isotopes,which undergo both massdependent and mass-independent fractionation,can provide critical insights into the deep-time ATOCSs,especially for those impacted by large igneous provinces(LIPs)events.Here,we build a highresolution multi-proxy record of Hg(concentrations and isotopic compositions)combined with organic carbon isotopes(δ^(13)Corg)and whole-rock geochemical data(including trace elements and phosphorus)from continuous cores in the Yangtze Platform,South China.Our data,combined with reported ones,indicate the occurrence of LIP eruptions against localized volcanism,and four successive,yet contrasting stages of ATOCSs during the OST.Moreover,we identified the coupling between two-pulse LIP magmatism and extreme ATOCSs,each with special pCO_(2),weathering rate,primary productivity,redox condition,climatic mode,and biotic evolution.For stage I,the first pulse of LIP magmatism triggered global warming,enhanced terrestrial weathering,oceanic acidification,eutrophication,anoxia,P recycling,and thereby widespread deposition of black shales.During stage II,the Hirnantian glaciation and oxygenation arose from the intense chemical weathering and black shale deposition of stage I;slashed terrestrial weathering and oceanic oxygenation facilitated CO_(2) accumulation.In stage III,another pulse of LIP magmatism triggered the de-glaciation,and the ATOCS was largely similar to that of stage I.This led to another round of oxygenation and positive d13Corg excursion in stage IV.Compared with the environmental pressure by the peculiar ATOCS of each stage,their transitions might have been more devastating in triggering the prolonged Late Ordovician Mass Extinctio
基金supported by the Natural Science Foundation of China(No.51808482)the Postdoctoral Science Foundation of China(No.2018M632392)the Jiangsu Open Research Project of Water Environmental Protection Technology and Equipment Engineering Laboratory(No.W1904)。
文摘The optimization of volume ratio(V_(An)/V_(A)/V_(0))and nitrate recycling ratio(R)in a two-sludge denitrifying phosphorus removal(DPR)process of Anaerobic Anoxic Oxic-Moving Bed Biofilm Reactor(A^(2)/O-MBBR)was investigated.The results showed that prolonged anaerobic retention time(HRT An:1.25→3.75 hr)exerted favorable effect on chemical oxygen demand(COD)removal(57.26%→73.54%),poly-β-hydroxyalkanoates(PHA)synthesis(105.70→138.12 mg COD/L)and PO_(4)^(3-)release(22.3→38.9 mg/L).However,anoxic retention time(HRT A)and R exhibited positive correlation with PHA utilization(43.87%-81.34%)and denitrifying phosphorus removal(DPR)potential(NO_(3)-/PO^(3-)_(4):0.57-1.34 mg/mg),leading to dramatical TN removal variations from 68.86%to 81.28%.Under the V An/V A/V O ratio of 2:6:0,sludge loss deteriorated nutrient removals but the sludge bioactivity quickly recovered when the oxic zone was recovered.The sludge characteristic and microstructure gradually transformed under the dissolved oxygen(DO)control(1.0-1.5→1.5-2.0 mg/L),in terms of sludge volume index(SVI:194→57 m L/g VSS),median-particle-size(D 50:99.6→300.5μm),extracellular polymeric substances(EPS)(105.62→226.18 mg/g VSS)and proteins/polysaccharides(PN/PS)ratio(1.52→3.46).Fluorescence in situ hybridization(FISH)results showed that phosphorus accumulation organisms(PAOs)(mainly Cluster I of Accumulibacter,contribution ratio:91.79%-94.10%)dominated the superior DPR performance,while glycogen accumulating organisms(GAOs)(mainly Competibacter,contribution ratio:82.61%-86.89%)was responsible for deteriorative TN and PO_(4)^(3-)removals.The optimal HRT A and R assembled around 5-6.5 hr and 300%-400%based on the PHA utilization and DRP performance,and the oxic zones also contributed to PO_(4)^(3-)removal although it showed low dependence on DO concentration and oxic retention time(HRT_(0)).
文摘A laboratory-scale reaction-crystallization process of struvite synthesis from diluted water solution of Mg^2+, NH^+ 4 and PO3- ions was studied. The research covered the tests of two original constructions of continuous jet-pump Draft Tube Magma (DTM)-type crystallizers with internal circulation of suspension (upward/downward). Interactions between constructional, hydrodynamic and kinetic factors were established and discussed. Nucleation and linear growth rates of struvite crystals were calculated on the basis of population density distribution. Kinetic model of idealized Mixed Suspension Mixed Product Removal (MSMPR) crystallizer considering the size-dependent growth mechanism was applied (Rojkowski hyperbolic equation). For comparison purposes the kinetic data corre- sponded to a simpler, continuous draft tube-type crystallizer equipped with propeller agitator were analyzed. It was concluded that crystal product of larger size was withdrawn from the jet-pump DTM crystallizer of the descending flow of suspension in a mixing chamber.
文摘The studies show that in the whole community, P is deficient, and N and K are basically balanced. N, P and K are accumulated in plant tissues and litters, but depleted in soil. N and P contents in surface soil(0—20 cm) are the main factors affecting crop growth, and P contents in 20 80 cm soil layer is the major affecting Paulownia elongata growth. The absorption coefficients of N, P and K in the communities are 0 078, 0 014 and 0 052 respectively, their utilization coefficients are 0 95, 0 90 and 0 94, and the recycling coefficients are 0 042, 0 05 and 0 063 respectively.