Phosphorus(P),as a limiting nutrient,plays a crucial role in the mountainous ecosystem development.Its biogeochemical cycle in mountainous ecosystems determines the bioavailability and sustainable supply of P,and thus...Phosphorus(P),as a limiting nutrient,plays a crucial role in the mountainous ecosystem development.Its biogeochemical cycle in mountainous ecosystems determines the bioavailability and sustainable supply of P,and thus becomes a crucial process which needs to be fully understood and described for ecological and environmental conservation.However,most of research about P biogeochemical processes has been carried out in aquatic environment and agronomic field,but rare researches have been done in mountain ecosystem.In the present review,we summarize researches on P biogeochemical cycle concerning mountain ecosystem in recent decades,including rock weathering,the release,transformation and bioavailability of P,interactions between the P biological cycle and microbial and plant life,as well as the development of models.Based on the state of art,we propose the future work on this direction,including the integration of all these research,the development of a practical model to understand the P biogeochemical cycle and its bioavailability,and to provide a reference for ecological and environmental conservation of mountainous ecosystems and lowland aquatic systems.展开更多
全球气候变暖已大大改变了陆地植物碳吸收能力,提高了全球植被净初级生产力。随着气候变暖的加剧,磷对植物生长的限制作用逐渐显现且不断增强,磷影响陆地生态系统碳循环的机理和模型研究已成为研究热点。该文系统分析了磷影响陆地生态...全球气候变暖已大大改变了陆地植物碳吸收能力,提高了全球植被净初级生产力。随着气候变暖的加剧,磷对植物生长的限制作用逐渐显现且不断增强,磷影响陆地生态系统碳循环的机理和模型研究已成为研究热点。该文系统分析了磷影响陆地生态系统碳循环的相关机理以及模型对相关过程的定量化表达方法。综合对比分析了国际上的CarnegieAmes-Stanford Approach-CNP (CASA-CNP)、Community Land Model-CNP (CLM-CNP)和Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg-CNP (JSBACH-CNP)等碳、氮、磷耦合模型中磷影响植物光合作用与同化物分配过程、植物对磷的吸收过程、土壤中磷的转化过程以及生态系统磷输入与输出等过程的相关数学表达方法,指出了模型算法的局限与不确定性以及未来模型发展与改进的方向。同时综合对比分析了CASA-CNP、CLM-CNP、JSBACH-CNP模型的基本特征,总结了磷循环模型的建模方法,为未来开展磷影响陆地生态系统碳循环的模型模拟研究提供了借鉴方法与参考思路。展开更多
Matrix-bound phosphine (PH3), a new form of phosphorus, was found in sediment of Jiaozhou Bay in De-cember 2001. Concentration and distribution of PH3 in dif-ferent layers of sediment with different stations were ana-...Matrix-bound phosphine (PH3), a new form of phosphorus, was found in sediment of Jiaozhou Bay in De-cember 2001. Concentration and distribution of PH3 in dif-ferent layers of sediment with different stations were ana-lyzed. The results show that PH3 concentrations are various with different layers and different stations. PH3 concentra-tions in the bottom layer of sediment (20—30 cm) are usually higher than those in the surface layer (0—4 cm). The highest PH3 concentration in our investigation reaches 685 ng/kg (dry), which is much higher than those in terrestrial paddy soil, marsh and landfill that have been reported up to now. The correlation analysis indicates that there is no apparent correlation between the concentrations of PH3 and inorganic phosphorus in sediment. However, the correlation between the concentrations of phosphine and organic phosphorus in the bottom layer of sediment is remarkable (R2=0.83). It is considered that PH3 in sediment of Jiaozhou Bay is mainly produced from the decomposition of organic phosphorus in the anaerobic condition, and so PH3 concentrations are re-lated to organic phosphorus concentration and anaerobic environment in sediment. The discovery of PH3 in sediment will give people some new ideas on the mechanisms of phos-phorus supplement and biogeochemical cycle in Jiaozhou Bay.展开更多
基金funded by Chinese Academy of Sciences (Grant Nos. KZCX2-YW-BR-21 and KZZD-EW-TZ-06)Natural Science Foundation of China (Grant No. 41272200)
文摘Phosphorus(P),as a limiting nutrient,plays a crucial role in the mountainous ecosystem development.Its biogeochemical cycle in mountainous ecosystems determines the bioavailability and sustainable supply of P,and thus becomes a crucial process which needs to be fully understood and described for ecological and environmental conservation.However,most of research about P biogeochemical processes has been carried out in aquatic environment and agronomic field,but rare researches have been done in mountain ecosystem.In the present review,we summarize researches on P biogeochemical cycle concerning mountain ecosystem in recent decades,including rock weathering,the release,transformation and bioavailability of P,interactions between the P biological cycle and microbial and plant life,as well as the development of models.Based on the state of art,we propose the future work on this direction,including the integration of all these research,the development of a practical model to understand the P biogeochemical cycle and its bioavailability,and to provide a reference for ecological and environmental conservation of mountainous ecosystems and lowland aquatic systems.
文摘全球气候变暖已大大改变了陆地植物碳吸收能力,提高了全球植被净初级生产力。随着气候变暖的加剧,磷对植物生长的限制作用逐渐显现且不断增强,磷影响陆地生态系统碳循环的机理和模型研究已成为研究热点。该文系统分析了磷影响陆地生态系统碳循环的相关机理以及模型对相关过程的定量化表达方法。综合对比分析了国际上的CarnegieAmes-Stanford Approach-CNP (CASA-CNP)、Community Land Model-CNP (CLM-CNP)和Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg-CNP (JSBACH-CNP)等碳、氮、磷耦合模型中磷影响植物光合作用与同化物分配过程、植物对磷的吸收过程、土壤中磷的转化过程以及生态系统磷输入与输出等过程的相关数学表达方法,指出了模型算法的局限与不确定性以及未来模型发展与改进的方向。同时综合对比分析了CASA-CNP、CLM-CNP、JSBACH-CNP模型的基本特征,总结了磷循环模型的建模方法,为未来开展磷影响陆地生态系统碳循环的模型模拟研究提供了借鉴方法与参考思路。
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 40025614 and 20177024) and the National 973 Key Basic Re-search Project (Grant No. 2001CB409710).
文摘Matrix-bound phosphine (PH3), a new form of phosphorus, was found in sediment of Jiaozhou Bay in De-cember 2001. Concentration and distribution of PH3 in dif-ferent layers of sediment with different stations were ana-lyzed. The results show that PH3 concentrations are various with different layers and different stations. PH3 concentra-tions in the bottom layer of sediment (20—30 cm) are usually higher than those in the surface layer (0—4 cm). The highest PH3 concentration in our investigation reaches 685 ng/kg (dry), which is much higher than those in terrestrial paddy soil, marsh and landfill that have been reported up to now. The correlation analysis indicates that there is no apparent correlation between the concentrations of PH3 and inorganic phosphorus in sediment. However, the correlation between the concentrations of phosphine and organic phosphorus in the bottom layer of sediment is remarkable (R2=0.83). It is considered that PH3 in sediment of Jiaozhou Bay is mainly produced from the decomposition of organic phosphorus in the anaerobic condition, and so PH3 concentrations are re-lated to organic phosphorus concentration and anaerobic environment in sediment. The discovery of PH3 in sediment will give people some new ideas on the mechanisms of phos-phorus supplement and biogeochemical cycle in Jiaozhou Bay.