Based on plant phenology data from 26 stations of the Chinese Phenology Observation Network of the Chinese Academy of Sciences and the climate data, the change of plant phenophase in spring and the impact of climate w...Based on plant phenology data from 26 stations of the Chinese Phenology Observation Network of the Chinese Academy of Sciences and the climate data, the change of plant phenophase in spring and the impact of climate warming on the plant phenophase in China for the last 40 years are analyzed. Furthermore, the geographical distribution models of phenophase in every decade are reconstructed, and the impact of climate warming on geographical distribution model of phenophase is studied as well. The results show that (i) the response of phenophase advance or delay to temperature change is nonlinear. Since the 1980s, at the same amplitude of temperature change, phenophase delay amplitude caused by temperature decrease is greater than phenophase advance amplitude caused by temperature increase; the rate of phenophase advance days decreases with temperature increase amplitude, and the rate of phenophase delay days increases with temperature decrease amplitude. (ii) The geographical distribution model between展开更多
We investigated the responses of cropland phenophases to changes of agricultural thermal conditions in Northeast China using the SPOT-VGT Normalized Difference Vegetation Index (NDVI) ten-day-composed time-series da...We investigated the responses of cropland phenophases to changes of agricultural thermal conditions in Northeast China using the SPOT-VGT Normalized Difference Vegetation Index (NDVI) ten-day-composed time-series data, observed crop phenophases and the climate data collected from 1990 to 2010. First, the phenological parameters, such as the dates of onset-of-growth, peak-of-growth and end-of-growth as well as the length of the growing season, were extracted from the smoothed NVDI time-series dataset and showed an obvious correlation with the observed crop phenophases, including the stages of seedling, heading, maturity and the length of the growth period. Secondly, the spatio-temporal trends of the major thermal conditions (the first date of ≥10℃, the first frost date, the length of the temperature-allowing growth period and the accumulated temperature (AT) of ≥10℃) in Northeast China were illustrated and analyzed over the past 20 years. Thirdly, we focused on the responses of cropland phenophases to the thermal conditions changes. The results showed that the onset-of-growth date had an obvious positive correlation with the first date of ≥10℃ (P 0.01), especially in the northern part of the Songnen Plain, the eastern part of the Sanjiang Plain and the middle and eastern parts of Jilin Province. For the extracted length of growing season and the observed growth period, notable correlations were found in almost same regions (P 0.05). However, there was no obvious correlation between the end-of-growth date and the first frost date in the study area. Opposite correlations were observed between the length of the growing season and the AT of ≥10℃. In the northern part of the Songnen Plain, the eastern part of the Sanjiang Plain and the middle part of Jilin and Liaoning Provinces, the positive correlation coefficients were higher than the critical value of 0.05, whereas the negative correlation coefficients reached a level of 0.55 (P 0.05) in the middle and southern parts of Heilo展开更多
基金This work was supported by the Chinese Academy of Sciences (Grant No. KZCX2-314), the National Natural Science Foundation of China (Grant No. 49901001), and Institute of Geographic Sciences and Natural Resources Research, the Chinese Academy of Sciences
文摘Based on plant phenology data from 26 stations of the Chinese Phenology Observation Network of the Chinese Academy of Sciences and the climate data, the change of plant phenophase in spring and the impact of climate warming on the plant phenophase in China for the last 40 years are analyzed. Furthermore, the geographical distribution models of phenophase in every decade are reconstructed, and the impact of climate warming on geographical distribution model of phenophase is studied as well. The results show that (i) the response of phenophase advance or delay to temperature change is nonlinear. Since the 1980s, at the same amplitude of temperature change, phenophase delay amplitude caused by temperature decrease is greater than phenophase advance amplitude caused by temperature increase; the rate of phenophase advance days decreases with temperature increase amplitude, and the rate of phenophase delay days increases with temperature decrease amplitude. (ii) The geographical distribution model between
基金National Basic Program of China (973 Program),No.2010CB951502 National Natural Science Foundation of China,No.40930101,No.41001381 and No.41001246 Ministry of Finance of China through Non-profit National Research Institute,No.IARRP-2011-015
文摘We investigated the responses of cropland phenophases to changes of agricultural thermal conditions in Northeast China using the SPOT-VGT Normalized Difference Vegetation Index (NDVI) ten-day-composed time-series data, observed crop phenophases and the climate data collected from 1990 to 2010. First, the phenological parameters, such as the dates of onset-of-growth, peak-of-growth and end-of-growth as well as the length of the growing season, were extracted from the smoothed NVDI time-series dataset and showed an obvious correlation with the observed crop phenophases, including the stages of seedling, heading, maturity and the length of the growth period. Secondly, the spatio-temporal trends of the major thermal conditions (the first date of ≥10℃, the first frost date, the length of the temperature-allowing growth period and the accumulated temperature (AT) of ≥10℃) in Northeast China were illustrated and analyzed over the past 20 years. Thirdly, we focused on the responses of cropland phenophases to the thermal conditions changes. The results showed that the onset-of-growth date had an obvious positive correlation with the first date of ≥10℃ (P 0.01), especially in the northern part of the Songnen Plain, the eastern part of the Sanjiang Plain and the middle and eastern parts of Jilin Province. For the extracted length of growing season and the observed growth period, notable correlations were found in almost same regions (P 0.05). However, there was no obvious correlation between the end-of-growth date and the first frost date in the study area. Opposite correlations were observed between the length of the growing season and the AT of ≥10℃. In the northern part of the Songnen Plain, the eastern part of the Sanjiang Plain and the middle part of Jilin and Liaoning Provinces, the positive correlation coefficients were higher than the critical value of 0.05, whereas the negative correlation coefficients reached a level of 0.55 (P 0.05) in the middle and southern parts of Heilo