We apply ambient noise tomography to significant seismic data resources in a region including the northeastern Tibetan plateau, the Ordos block and the Sichuan basin. The seismic data come from about 160 stations of t...We apply ambient noise tomography to significant seismic data resources in a region including the northeastern Tibetan plateau, the Ordos block and the Sichuan basin. The seismic data come from about 160 stations of the provincial broadband digital seismograph networks of China. Ambient noise cross-correlations are performed on the data recorded between 2007 and 2009 and high quality inter-station Rayleigh phase velocity dispersion curves are obtained between periods of 6 s to 35 s. Resulting Rayleigh wave phase velocity maps possess a lateral resolution between 100 km and 200 kin. The phase velocities at short periods (〈20 s) are lower in the Sichuan basin, the northwest segment of the Ordos block and the Weihe graben, and outline sedimentary deposits. At intermediate and long periods (〉25 s), strong high velocity anomalies are observed within the Ordos block and the Sichuan basin and low phase velocities are imaged in the northeastern Tibetan plateau, reflecting the variation of crustal thickness from the Tibetan plateau to the neighboring regions in the east. Crustal and uppermost mantle shear wave velocities vary strongly between the Tibetan plateau, the Sichuan basin and the Ordos block. The Ordos block and the Sichuan basin are dominated by high shear wave velocities in the crust and uppermost mantle. There is a triangle-shaped low velocity zone located in the northeastern Tibetan plateau, whose width narrows towards the eastern margin of the plateau. No low velocity zone is apparent beneath the Qinling orogen, suggesting that mass may not be able to flow eastward through the boundary between the Ordos block and the Sichuan basin in the crust and uppermost mantle.展开更多
We presented high-resolution Rayleigh wave phase velocity maps at periods ranging from 5 s to 30 s in the northeast part of the North China Craton (NNCC). Continuous time-series of vertical component between October 2...We presented high-resolution Rayleigh wave phase velocity maps at periods ranging from 5 s to 30 s in the northeast part of the North China Craton (NNCC). Continuous time-series of vertical component between October 2006 and December 2008, recorded by 187 broadband stations temporarily deployed in the NNCC region, have been cross-correlated to obtain estimated fundamental mode Rayleigh wave Green’s functions. Using the frequency and time analysis technique based on continuous wavelet transformation, we measured 3 667 Rayleigh wave phase velocity dispersion curves. High-resolution phase velocity maps at periods of 5, 10, 20 and 30 s were reconstructed with grid size 0.25°× 0.25°, which reveal lateral heterogeneity of shear wave structure in the crust and upper mantle of NNCC. For periods shorter than 10 s, the phase velocity variations are well correlated with the principal geological units in the NNCC, with low-speed anomalies corresponding to the major sedimentary basins and high-speed anomalies coinciding with the main mountain ranges. Within the period range from 20 s to 30 s, high phase velocity observed in eastern NCC is coincident with the thin crust, whereas low phase velocities imaged in central NCC is correlated to the thick crust. However, the low-velocity anomaly in the Beijing-Tianjin-Tangshan region displayed in the 20 s and 30 s phase maps may be associated with fluids.展开更多
The data of short-period (1~18 s) surface waves recorded by 23 stations belonging to the digital seismic network of Yunnan Province of China are used in this paper. From these data, the dispersion curves of phase velo...The data of short-period (1~18 s) surface waves recorded by 23 stations belonging to the digital seismic network of Yunnan Province of China are used in this paper. From these data, the dispersion curves of phase velocities of the fundamental mode Rayleigh wave along 209 paths are determined by using the two-station narrowband filtering cross-correlation method. Adopting tomography method, the distribution maps of phase velocities at various peri-ods in Yunnan region are inverted. The maps of phase velocities on profiles along 24N, 25N, 26N, 27N and 100.5E and the distribution maps of phase velocities at 3 periods in the study region are given. The results show that the phase velocity distribution in Yunnan region has strong variations in horizontal direction, and the phase velocity distribution in short-period range is closely related to the thickness of sedimentary layers in the shallow crust. The phase velocity in southern part of the Sichuan-Yunnan rhombic block encircled by the Honghe fault and Xiaojiang fault is obviously lower than that in surrounding areas. The epicentral locations of strong earthquakes in Yunnan region are mainly distributed in transitional zones between low and high phase velocities.展开更多
基金supported by Chinese Academy of Sciences grant kzcx2-yw-142 and Y009021002National Natural Science Foundation of China under grant No. 40974034+1 种基金NSF-EAR award 0944022NSF-OISE 0730154 at the University of Colorado at Boulder
文摘We apply ambient noise tomography to significant seismic data resources in a region including the northeastern Tibetan plateau, the Ordos block and the Sichuan basin. The seismic data come from about 160 stations of the provincial broadband digital seismograph networks of China. Ambient noise cross-correlations are performed on the data recorded between 2007 and 2009 and high quality inter-station Rayleigh phase velocity dispersion curves are obtained between periods of 6 s to 35 s. Resulting Rayleigh wave phase velocity maps possess a lateral resolution between 100 km and 200 kin. The phase velocities at short periods (〈20 s) are lower in the Sichuan basin, the northwest segment of the Ordos block and the Weihe graben, and outline sedimentary deposits. At intermediate and long periods (〉25 s), strong high velocity anomalies are observed within the Ordos block and the Sichuan basin and low phase velocities are imaged in the northeastern Tibetan plateau, reflecting the variation of crustal thickness from the Tibetan plateau to the neighboring regions in the east. Crustal and uppermost mantle shear wave velocities vary strongly between the Tibetan plateau, the Sichuan basin and the Ordos block. The Ordos block and the Sichuan basin are dominated by high shear wave velocities in the crust and uppermost mantle. There is a triangle-shaped low velocity zone located in the northeastern Tibetan plateau, whose width narrows towards the eastern margin of the plateau. No low velocity zone is apparent beneath the Qinling orogen, suggesting that mass may not be able to flow eastward through the boundary between the Ordos block and the Sichuan basin in the crust and uppermost mantle.
基金supported by the National Natural Science Foundation of China(No.41104029)National Nonprofit Institute Research Grant of Institute of Geophysics, China Earthquake Administration (No.DQJB11B04)Basic Research Project of Ministry of Science and Technology China(No.2006FY110100)
文摘We presented high-resolution Rayleigh wave phase velocity maps at periods ranging from 5 s to 30 s in the northeast part of the North China Craton (NNCC). Continuous time-series of vertical component between October 2006 and December 2008, recorded by 187 broadband stations temporarily deployed in the NNCC region, have been cross-correlated to obtain estimated fundamental mode Rayleigh wave Green’s functions. Using the frequency and time analysis technique based on continuous wavelet transformation, we measured 3 667 Rayleigh wave phase velocity dispersion curves. High-resolution phase velocity maps at periods of 5, 10, 20 and 30 s were reconstructed with grid size 0.25°× 0.25°, which reveal lateral heterogeneity of shear wave structure in the crust and upper mantle of NNCC. For periods shorter than 10 s, the phase velocity variations are well correlated with the principal geological units in the NNCC, with low-speed anomalies corresponding to the major sedimentary basins and high-speed anomalies coinciding with the main mountain ranges. Within the period range from 20 s to 30 s, high phase velocity observed in eastern NCC is coincident with the thin crust, whereas low phase velocities imaged in central NCC is correlated to the thick crust. However, the low-velocity anomaly in the Beijing-Tianjin-Tangshan region displayed in the 20 s and 30 s phase maps may be associated with fluids.
基金Joint Seismological Science Foundation of China (101086) and the key project Digital Crustal and Mantle Structure of Chinese Mainland from China Earthquake Administration.
基金Joint Seismological Science Foundation of China (101086) and the key project "Digital Crustal and Mantle Structure of Chinese Mainland" from China Earthquake Administration.
文摘The data of short-period (1~18 s) surface waves recorded by 23 stations belonging to the digital seismic network of Yunnan Province of China are used in this paper. From these data, the dispersion curves of phase velocities of the fundamental mode Rayleigh wave along 209 paths are determined by using the two-station narrowband filtering cross-correlation method. Adopting tomography method, the distribution maps of phase velocities at various peri-ods in Yunnan region are inverted. The maps of phase velocities on profiles along 24N, 25N, 26N, 27N and 100.5E and the distribution maps of phase velocities at 3 periods in the study region are given. The results show that the phase velocity distribution in Yunnan region has strong variations in horizontal direction, and the phase velocity distribution in short-period range is closely related to the thickness of sedimentary layers in the shallow crust. The phase velocity in southern part of the Sichuan-Yunnan rhombic block encircled by the Honghe fault and Xiaojiang fault is obviously lower than that in surrounding areas. The epicentral locations of strong earthquakes in Yunnan region are mainly distributed in transitional zones between low and high phase velocities.