The authors discuss the existence of pseudo almost periodic solutions of differential equations with piecewise constant argument by means of introducing new concept, pseudo almost periodic sequence.
Under suitable assumptions, the existence and the uniqueness of the pseudo-almost periodic solution for a singularly perturbed differential equation with piecewise constant argument are obtained. In addition, the stab...Under suitable assumptions, the existence and the uniqueness of the pseudo-almost periodic solution for a singularly perturbed differential equation with piecewise constant argument are obtained. In addition, the stability properties of these solutions are characterized by the construction of manifolds of initial data.展开更多
The conservative form and singular perturbed ordinary differential equation with periodic boundary value problem were studied, and a conservative difference scheme was constructed. Using the method of decomposing the ...The conservative form and singular perturbed ordinary differential equation with periodic boundary value problem were studied, and a conservative difference scheme was constructed. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, it is proved that the scheme converges uniformly to the solution of differential equation with order one.展开更多
In this paper,it is proved that the weak solution to the Cauchy problem for the scalar viscous conservation law,with nonlinear viscosity,different far field states and periodic perturbations,not only exists globally i...In this paper,it is proved that the weak solution to the Cauchy problem for the scalar viscous conservation law,with nonlinear viscosity,different far field states and periodic perturbations,not only exists globally in time,but also converges towards the viscous shock wave of the corresponding Riemann problem as time goes to infinity.Furthermore,the decay rate is shown.The proof is given by a technical energy method.展开更多
Consider the time-periodic perturbations of n-dimensional autonomous systems with nonhyperbolic but non-critical closed orbits in the phase space. The elementary bifurcations, such as the saddle-node, transcritical, p...Consider the time-periodic perturbations of n-dimensional autonomous systems with nonhyperbolic but non-critical closed orbits in the phase space. The elementary bifurcations, such as the saddle-node, transcritical, pitchfork bifurcation to a non-hyperbolic but non-critical invariant torus of the unperturbed systems in the extended phase space (x, t), are studied. Some conditions which depend only on the original systems and can be used to determine the bifurcation structures of these problems are obtained. The theory is applied to two concrete examples.展开更多
We obtain a general unstable periodic solution near the homoclinic orbit of the Duffing oscillator with weak periodic perturbation by using the direct perturbation technique.Theoretical analysis reveals that the stabl...We obtain a general unstable periodic solution near the homoclinic orbit of the Duffing oscillator with weak periodic perturbation by using the direct perturbation technique.Theoretical analysis reveals that the stable periodic orbits are embedded in the Melnikov chaotic attractor.The corresponding numerical results show that fitting control parameters into the stability conditions can control chaos in the system,and the phase difference between the two sinusoidal forces added to the Duffing equation plays an important role in controlling chaos.展开更多
Consider the time-periodic perturbations of an n-dimensional autonomous system with a nonhyperbolic closed orbit in the phase space. By the method of averaging and Floquet theory, the bifurcations of the invariant tor...Consider the time-periodic perturbations of an n-dimensional autonomous system with a nonhyperbolic closed orbit in the phase space. By the method of averaging and Floquet theory, the bifurcations of the invariant torus in the extended phase space are studied.展开更多
文摘The authors discuss the existence of pseudo almost periodic solutions of differential equations with piecewise constant argument by means of introducing new concept, pseudo almost periodic sequence.
基金the National Natural Science Foundation of China(10371010)SRFDP(20030027011)
文摘Under suitable assumptions, the existence and the uniqueness of the pseudo-almost periodic solution for a singularly perturbed differential equation with piecewise constant argument are obtained. In addition, the stability properties of these solutions are characterized by the construction of manifolds of initial data.
文摘The conservative form and singular perturbed ordinary differential equation with periodic boundary value problem were studied, and a conservative difference scheme was constructed. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, it is proved that the scheme converges uniformly to the solution of differential equation with order one.
文摘In this paper,it is proved that the weak solution to the Cauchy problem for the scalar viscous conservation law,with nonlinear viscosity,different far field states and periodic perturbations,not only exists globally in time,but also converges towards the viscous shock wave of the corresponding Riemann problem as time goes to infinity.Furthermore,the decay rate is shown.The proof is given by a technical energy method.
文摘Consider the time-periodic perturbations of n-dimensional autonomous systems with nonhyperbolic but non-critical closed orbits in the phase space. The elementary bifurcations, such as the saddle-node, transcritical, pitchfork bifurcation to a non-hyperbolic but non-critical invariant torus of the unperturbed systems in the extended phase space (x, t), are studied. Some conditions which depend only on the original systems and can be used to determine the bifurcation structures of these problems are obtained. The theory is applied to two concrete examples.
文摘We obtain a general unstable periodic solution near the homoclinic orbit of the Duffing oscillator with weak periodic perturbation by using the direct perturbation technique.Theoretical analysis reveals that the stable periodic orbits are embedded in the Melnikov chaotic attractor.The corresponding numerical results show that fitting control parameters into the stability conditions can control chaos in the system,and the phase difference between the two sinusoidal forces added to the Duffing equation plays an important role in controlling chaos.
基金Project supported by the National Natural Science Foundation of Chinathe Foundation for University Key Teacher by the Ministry.
文摘Consider the time-periodic perturbations of an n-dimensional autonomous system with a nonhyperbolic closed orbit in the phase space. By the method of averaging and Floquet theory, the bifurcations of the invariant torus in the extended phase space are studied.