本研究利用70号道路石油沥青和SBS改性沥青,将温拌剂(Sasobit)、氢氧化铝(ATH)和有机蒙脱土(OMMT)与沥青复配,制备成三种不同阻燃剂掺量(质量分数)的温拌阻燃沥青,采用多应力蠕变恢复(MSCR)试验开展对温拌阻燃沥青高温性能的评价。分别...本研究利用70号道路石油沥青和SBS改性沥青,将温拌剂(Sasobit)、氢氧化铝(ATH)和有机蒙脱土(OMMT)与沥青复配,制备成三种不同阻燃剂掺量(质量分数)的温拌阻燃沥青,采用多应力蠕变恢复(MSCR)试验开展对温拌阻燃沥青高温性能的评价。分别对温拌阻燃沥青在60℃下的应变变化、蠕变恢复率(R)、不可恢复蠕变柔量(J_(nr))及其相应应力敏感性指标(R_(diff)、J_(nrdiff))进行分析,并依据AASHTO M 332-20标准对不同阻燃剂掺量的温拌阻燃沥青进行交通分级。结果表明:随着阻燃剂掺量的提高,两种类型沥青的应变值减小,J_(nr)值呈减小趋势,R值呈增大趋势;阻燃剂掺量较低时,提高其掺量对沥青结合料的高温性能改善效果更加明显;温拌阻燃沥青(道路石油沥青)的J_(nr3.2)值不满足AASHTO标准中“≤4.5”的要求。温拌阻燃沥青的J_(nrdiff)值均能满足AASHTO标准中“≤75%”的要求。温拌阻燃沥青(道路石油沥青)未达到标准交通要求而无法分级,温拌阻燃沥青(SBS改性沥青)在4%阻燃剂掺量下达到特重交通的标准,在8%、12%掺量下达到极重交通的标准,因此温拌阻燃沥青(SBS改性沥青)的高温性能更好。基于对温拌阻燃沥青蠕变力学指标、高温交通分级和经济性的综合考虑,推荐复配阻燃剂(ATH、OMMT的质量比为3∶1)的最佳掺量为8%。展开更多
An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside di...An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside directly. This kind of structure is named "active pipe-embedded building envelope" due to dealing with the thermal energy actively inside the structure mass by circulating water. This structure not only deals with thermal energy before the external disturbance becomes cooling/heating load by using the circulating water, but also may use low-grade energy sources such as evaporative cooling, solar energy, and geothermal energy. In the meantime, this structure can also improve the indoor thermal comfort by tempering the internal wall surface temperature variation due to the thermal removal in the mass. This work further presents the thermal performance of this structure under a typical hot summer weather condition by comparing it with that of the conventional external wall/roof with numerical simulation. The results show that this pipe-embedded structure may reduce the external heat transfer significantly and reduce the internal wall surface temperature for improving thermal comfort. This work also presents the effects of the water temperature and the pipe spacing on the heat transfer of this structure. The internal surface heat transfer may reduce by about 2.6 W/mE when the water temperature reduces by 1℃ as far as a brick wall with pipes embedded inside is concerned. When the pipe spacing reduces by 50 mm, the internal wall surface heat flux can also reduce by about 2.3 W/m2.展开更多
We present PerformanceVis,a visual analytics tool for analyzing student admission and course performance data and investigating homework and exam question design.Targeting a university-wide introductory chemistry cour...We present PerformanceVis,a visual analytics tool for analyzing student admission and course performance data and investigating homework and exam question design.Targeting a university-wide introductory chemistry course with nearly 1000 student enrollment,we consider the requirements and needs of students,instructors,and administrators in the design of PerformanceVis.We study the correlation between question items from assignments and exams,employ machine learning techniques for student grade prediction,and develop an interface for interactive exploration of student course performance data.PerformanceVis includes four main views(overall exam grade pathway,detailed exam grade pathway,detailed exam item analysis,and overall exam&homework analysis)which are dynamically linked together for user interaction and exploration.We demonstrate the effectiveness of PerformanceVis through case studies along with an ad-hoc expert evaluation.Finally,we conclude this work by pointing out future work in this direction of learning analytics research.展开更多
文摘本研究利用70号道路石油沥青和SBS改性沥青,将温拌剂(Sasobit)、氢氧化铝(ATH)和有机蒙脱土(OMMT)与沥青复配,制备成三种不同阻燃剂掺量(质量分数)的温拌阻燃沥青,采用多应力蠕变恢复(MSCR)试验开展对温拌阻燃沥青高温性能的评价。分别对温拌阻燃沥青在60℃下的应变变化、蠕变恢复率(R)、不可恢复蠕变柔量(J_(nr))及其相应应力敏感性指标(R_(diff)、J_(nrdiff))进行分析,并依据AASHTO M 332-20标准对不同阻燃剂掺量的温拌阻燃沥青进行交通分级。结果表明:随着阻燃剂掺量的提高,两种类型沥青的应变值减小,J_(nr)值呈减小趋势,R值呈增大趋势;阻燃剂掺量较低时,提高其掺量对沥青结合料的高温性能改善效果更加明显;温拌阻燃沥青(道路石油沥青)的J_(nr3.2)值不满足AASHTO标准中“≤4.5”的要求。温拌阻燃沥青的J_(nrdiff)值均能满足AASHTO标准中“≤75%”的要求。温拌阻燃沥青(道路石油沥青)未达到标准交通要求而无法分级,温拌阻燃沥青(SBS改性沥青)在4%阻燃剂掺量下达到特重交通的标准,在8%、12%掺量下达到极重交通的标准,因此温拌阻燃沥青(SBS改性沥青)的高温性能更好。基于对温拌阻燃沥青蠕变力学指标、高温交通分级和经济性的综合考虑,推荐复配阻燃剂(ATH、OMMT的质量比为3∶1)的最佳掺量为8%。
基金Project(51178201) supported by the National Natural Science Foundation of China Project(2011CDB292) supported by the Natural Science Foundation of Hubei Province,China
文摘An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside directly. This kind of structure is named "active pipe-embedded building envelope" due to dealing with the thermal energy actively inside the structure mass by circulating water. This structure not only deals with thermal energy before the external disturbance becomes cooling/heating load by using the circulating water, but also may use low-grade energy sources such as evaporative cooling, solar energy, and geothermal energy. In the meantime, this structure can also improve the indoor thermal comfort by tempering the internal wall surface temperature variation due to the thermal removal in the mass. This work further presents the thermal performance of this structure under a typical hot summer weather condition by comparing it with that of the conventional external wall/roof with numerical simulation. The results show that this pipe-embedded structure may reduce the external heat transfer significantly and reduce the internal wall surface temperature for improving thermal comfort. This work also presents the effects of the water temperature and the pipe spacing on the heat transfer of this structure. The internal surface heat transfer may reduce by about 2.6 W/mE when the water temperature reduces by 1℃ as far as a brick wall with pipes embedded inside is concerned. When the pipe spacing reduces by 50 mm, the internal wall surface heat flux can also reduce by about 2.3 W/m2.
基金the U.S.National Science Foundation through grants IIS-1455886 and DUE-1833129the Schlindwein Family Tel Aviv University-Notre Dame Research Collaboration,United States Grant.Haozhang Deng,Xuemeng Wang,Zhiyi Guo,and Ashley Decker conducted this work as an undergraduate research project at the University of Notre Dame during Summer 2019.
文摘We present PerformanceVis,a visual analytics tool for analyzing student admission and course performance data and investigating homework and exam question design.Targeting a university-wide introductory chemistry course with nearly 1000 student enrollment,we consider the requirements and needs of students,instructors,and administrators in the design of PerformanceVis.We study the correlation between question items from assignments and exams,employ machine learning techniques for student grade prediction,and develop an interface for interactive exploration of student course performance data.PerformanceVis includes four main views(overall exam grade pathway,detailed exam grade pathway,detailed exam item analysis,and overall exam&homework analysis)which are dynamically linked together for user interaction and exploration.We demonstrate the effectiveness of PerformanceVis through case studies along with an ad-hoc expert evaluation.Finally,we conclude this work by pointing out future work in this direction of learning analytics research.