The 1.4–1.8μm eye-safe lasers have been widely used in the fields of laser medicine and laser detection and ranging.The diamond Raman lasers are capable of delivering excellent characteristics,such as good beam qual...The 1.4–1.8μm eye-safe lasers have been widely used in the fields of laser medicine and laser detection and ranging.The diamond Raman lasers are capable of delivering excellent characteristics,such as good beam quality concomitantly with high output power.The intra-cavity diamond Raman lasers have the advantages of compactness and low Raman thresholds compared to the external-cavity Raman lasers.However,to date,the intra-cavity diamond cascaded Raman lasers in the spectral region of the eye-safe laser have an output power of only a few hundred milliwatts.A 1485 nm Nd:YVO_4/diamond intra-cavity cascaded Raman laser is reported in this paper.The mode matching and stability of the cavity were optimally designed by a V-shaped folded cavity,which yielded an average output power of up to 2.2 W at a pulse repetition frequency of 50 kHz with a diode to second-Stokes conversion efficiency of 8.1%.Meanwhile,the pulse width of the second-Stokes laser was drastically reduced from 60 ns of the fundamental laser to 1.1 ns,which resulted in a high peak power of 40 kW.The device also exhibited single longitudinal mode with a narrow spectral width of<0.02 nm.展开更多
为缩减风电输出功率小时级的峰谷差,减小风电功率间歇性、波动性对规模化风电并网带来的不利影响,基于风电功率短期预测技术的小时级风电功率输出指令,提出风电功率部分"削峰填谷"控制策略,利用电池储能系统(battery energy s...为缩减风电输出功率小时级的峰谷差,减小风电功率间歇性、波动性对规模化风电并网带来的不利影响,基于风电功率短期预测技术的小时级风电功率输出指令,提出风电功率部分"削峰填谷"控制策略,利用电池储能系统(battery energy storage system,BESS)缩减小时级尺度的风电功率峰谷差,并在各时间窗口内将风储合成出力的风电功率波动限制在一定的带宽范围以内;提出基于正态分布的储能功率计算方法,基于电池储能系统优化控制策略,分析电池储能系统实现部分"削峰填谷"控制策略与储能容量之间的关系。仿真实验结果验证该控制策略下储能容量配置的正确性与可行性。展开更多
复杂环境条件下,光伏阵列由于被遮挡其输出特性呈现多峰值特性,传统最大功率点跟踪MPPT(maximum power point tracking)算法不再适用。为此,在研究光伏阵列多峰值输出特性的基础上,提出一种基于粒子群优化PSO(particle swarm optimizati...复杂环境条件下,光伏阵列由于被遮挡其输出特性呈现多峰值特性,传统最大功率点跟踪MPPT(maximum power point tracking)算法不再适用。为此,在研究光伏阵列多峰值输出特性的基础上,提出一种基于粒子群优化PSO(particle swarm optimization)算法和电导增量法INC(incremental conductance)的多峰值MPPT算法。该算法分成2步:第1步先由PSO算法将输入位置调整到最优值附近;第2步再由INC算法得到全局最优解,其中对传统PSO算法进行改进,INC算法采用变步长扰动。在Matlab中进行仿真,结果表明该算法可实现复杂环境条件下的最大功率跟踪,并具备较快的响应速度和稳定的寻优效果。展开更多
In this research,we report the latest progress in the suppression of nanosecond prepulses from regenerative amplifier and multipass amplifiers in the SULF-1PW laser.The prepulse generated from the Pockels cell(PC)in a...In this research,we report the latest progress in the suppression of nanosecond prepulses from regenerative amplifier and multipass amplifiers in the SULF-1PW laser.The prepulse generated from the Pockels cell(PC)in a regenerative amplifier is delay-shifted by enlarging the distance between the PC and the nearby cavity mirror,and then removed by the extra pulse pickers outside the regenerative amplifier.The prepulses arising from multipass amplifiers are also further suppressed by adopting a novel amplifier configuration and properly rotating the Ti:sapphire crystals.After the optimizations,the temporal contrast on a nanosecond time scale is promoted to be better than a contrast level of 10^(-9).This research can provide beneficial guidance for the suppression of nanosecond prepulses in the high-peak-power femtosecond laser systems.展开更多
Passively Q-switched quasi-continuous-wave (QCW) diode-pumped Nd:YAG laser with Cr^4+ :YAG as saturable absorber is numerically investigated by solving the coupled rate equations. The threshold pump rate for pass...Passively Q-switched quasi-continuous-wave (QCW) diode-pumped Nd:YAG laser with Cr^4+ :YAG as saturable absorber is numerically investigated by solving the coupled rate equations. The threshold pump rate for passively Q-switched QCW-pumped laser is derived. The effects of the pump rate and pump-pulse duration on the laser operation characteristics are studied theoretically. The pump power range can be estimated according to the number of output pulses. The numerical simulation results are in good agreement with the experimental results.展开更多
Maximizing the energy-loading performance of gratings is a universal theme in high-energy pulse compression.However,sporadic grating designs strongly restrict the development of high-power laser engineering.This study...Maximizing the energy-loading performance of gratings is a universal theme in high-energy pulse compression.However,sporadic grating designs strongly restrict the development of high-power laser engineering.This study proposes an all-and mixed-dielectric grating design paradigm for Nd:glass-based pulse compressors.The solution regions are classified according to the line density.High diffraction efficiency solutions are described in more detail based on the dispersion amount and incident angle.Moreover,an energy scaling factor of 7.09 times larger than that of the National Ignition Facility’s Advanced Radiographic Capability(NIF-ARC)is obtained by taking advantage of the low electric field intensity at transverse magnetic polarization and a small incident angle.These results make a pioneering contribution to facilitate future 20–50-petawatt-class ultrafast laser systems.展开更多
基金financially supported by the Science and Technology Major Project of Henan Province(No.221100230300)the National Natural Science Foundation of China(No.11774301)。
文摘The 1.4–1.8μm eye-safe lasers have been widely used in the fields of laser medicine and laser detection and ranging.The diamond Raman lasers are capable of delivering excellent characteristics,such as good beam quality concomitantly with high output power.The intra-cavity diamond Raman lasers have the advantages of compactness and low Raman thresholds compared to the external-cavity Raman lasers.However,to date,the intra-cavity diamond cascaded Raman lasers in the spectral region of the eye-safe laser have an output power of only a few hundred milliwatts.A 1485 nm Nd:YVO_4/diamond intra-cavity cascaded Raman laser is reported in this paper.The mode matching and stability of the cavity were optimally designed by a V-shaped folded cavity,which yielded an average output power of up to 2.2 W at a pulse repetition frequency of 50 kHz with a diode to second-Stokes conversion efficiency of 8.1%.Meanwhile,the pulse width of the second-Stokes laser was drastically reduced from 60 ns of the fundamental laser to 1.1 ns,which resulted in a high peak power of 40 kW.The device also exhibited single longitudinal mode with a narrow spectral width of<0.02 nm.
文摘为缩减风电输出功率小时级的峰谷差,减小风电功率间歇性、波动性对规模化风电并网带来的不利影响,基于风电功率短期预测技术的小时级风电功率输出指令,提出风电功率部分"削峰填谷"控制策略,利用电池储能系统(battery energy storage system,BESS)缩减小时级尺度的风电功率峰谷差,并在各时间窗口内将风储合成出力的风电功率波动限制在一定的带宽范围以内;提出基于正态分布的储能功率计算方法,基于电池储能系统优化控制策略,分析电池储能系统实现部分"削峰填谷"控制策略与储能容量之间的关系。仿真实验结果验证该控制策略下储能容量配置的正确性与可行性。
文摘复杂环境条件下,光伏阵列由于被遮挡其输出特性呈现多峰值特性,传统最大功率点跟踪MPPT(maximum power point tracking)算法不再适用。为此,在研究光伏阵列多峰值输出特性的基础上,提出一种基于粒子群优化PSO(particle swarm optimization)算法和电导增量法INC(incremental conductance)的多峰值MPPT算法。该算法分成2步:第1步先由PSO算法将输入位置调整到最优值附近;第2步再由INC算法得到全局最优解,其中对传统PSO算法进行改进,INC算法采用变步长扰动。在Matlab中进行仿真,结果表明该算法可实现复杂环境条件下的最大功率跟踪,并具备较快的响应速度和稳定的寻优效果。
基金This work was supported by the National Key R&D Program of China(Nos.2017YFE0123700 and 2022YFA1604401)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB1603)+2 种基金the National Natural Science Foundation of China(Nos.61925507 and 62375273)the Program of Shanghai Academic/Technology Research Leader(No.18XD1404200)the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02).
文摘In this research,we report the latest progress in the suppression of nanosecond prepulses from regenerative amplifier and multipass amplifiers in the SULF-1PW laser.The prepulse generated from the Pockels cell(PC)in a regenerative amplifier is delay-shifted by enlarging the distance between the PC and the nearby cavity mirror,and then removed by the extra pulse pickers outside the regenerative amplifier.The prepulses arising from multipass amplifiers are also further suppressed by adopting a novel amplifier configuration and properly rotating the Ti:sapphire crystals.After the optimizations,the temporal contrast on a nanosecond time scale is promoted to be better than a contrast level of 10^(-9).This research can provide beneficial guidance for the suppression of nanosecond prepulses in the high-peak-power femtosecond laser systems.
文摘Passively Q-switched quasi-continuous-wave (QCW) diode-pumped Nd:YAG laser with Cr^4+ :YAG as saturable absorber is numerically investigated by solving the coupled rate equations. The threshold pump rate for passively Q-switched QCW-pumped laser is derived. The effects of the pump rate and pump-pulse duration on the laser operation characteristics are studied theoretically. The pump power range can be estimated according to the number of output pulses. The numerical simulation results are in good agreement with the experimental results.
基金This work was supported by the National Key R&D Program of China(No.2020YFA0714500)the National Natural Science Foundation of China(Nos.61875212 and U1831211)+2 种基金the Shanghai Strategic Emerging Industry Development Special Fund(No.31011442501217020191D3101001)the International Partnership Program of Chinese Academy of Sciences(No.181231KYSB20200040)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA25020314).
文摘Maximizing the energy-loading performance of gratings is a universal theme in high-energy pulse compression.However,sporadic grating designs strongly restrict the development of high-power laser engineering.This study proposes an all-and mixed-dielectric grating design paradigm for Nd:glass-based pulse compressors.The solution regions are classified according to the line density.High diffraction efficiency solutions are described in more detail based on the dispersion amount and incident angle.Moreover,an energy scaling factor of 7.09 times larger than that of the National Ignition Facility’s Advanced Radiographic Capability(NIF-ARC)is obtained by taking advantage of the low electric field intensity at transverse magnetic polarization and a small incident angle.These results make a pioneering contribution to facilitate future 20–50-petawatt-class ultrafast laser systems.