针对多无人艇编队避障问题,对静态避障的路径消耗问题进行建模分析,在动态避障时提出一种偏置人工势场法使策略符合艇群国际海上避碰规则(swarm International Regulations for Preventing Collisions at Sea,sCOLREGS)。本方法首先对...针对多无人艇编队避障问题,对静态避障的路径消耗问题进行建模分析,在动态避障时提出一种偏置人工势场法使策略符合艇群国际海上避碰规则(swarm International Regulations for Preventing Collisions at Sea,sCOLREGS)。本方法首先对传统人工势场法进行改进,定义符合艇群会遇态势判断需求的sCOLREGS,通过速度障碍法实时判断碰撞风险,然后利用偏置斥力区域的改进人工势场法实现对规则的遵守。仿真实验表明,本文方法在障碍物与编队大小相当时可显著减少避障路程,在确保避障实时性的同时,较好地遵守了国际海上避碰规则相关条例。研究结论可为海面无人艇集群安全航行提供参考。展开更多
Pathfinding is a kind of problem widely used in daily life. It is widely used in network games, map navigation and other fields. However, the traditional A* algorithm has some shortcomings, such as heuristic function ...Pathfinding is a kind of problem widely used in daily life. It is widely used in network games, map navigation and other fields. However, the traditional A* algorithm has some shortcomings, such as heuristic function needs to be designed according to different problems, path has many inflection points, and algorithm stability is poor. B* algorithm also has the shortcoming of inaccurate pathfinding. In order to solve the problems existing in A* and B* algorithms, obstacle avoidance regeneration mechanism, pre-exploration mechanism and equivalent waiting strategy are proposed. It adds a bidirectional parallel search mechanism to form an IBP-B* algorithm (Intelligent bi-directional parallel B* routing algorithm). The simulation results show that the speed of IBP-B* algorithm is 182% higher than that of A* algorithm and 366% higher than that of BFS algorithm. Meanwhile, compared with B* algorithm, IBP-B* algorithm improves the pathfinding accuracy of the algorithm.展开更多
文摘针对多无人艇编队避障问题,对静态避障的路径消耗问题进行建模分析,在动态避障时提出一种偏置人工势场法使策略符合艇群国际海上避碰规则(swarm International Regulations for Preventing Collisions at Sea,sCOLREGS)。本方法首先对传统人工势场法进行改进,定义符合艇群会遇态势判断需求的sCOLREGS,通过速度障碍法实时判断碰撞风险,然后利用偏置斥力区域的改进人工势场法实现对规则的遵守。仿真实验表明,本文方法在障碍物与编队大小相当时可显著减少避障路程,在确保避障实时性的同时,较好地遵守了国际海上避碰规则相关条例。研究结论可为海面无人艇集群安全航行提供参考。
文摘Pathfinding is a kind of problem widely used in daily life. It is widely used in network games, map navigation and other fields. However, the traditional A* algorithm has some shortcomings, such as heuristic function needs to be designed according to different problems, path has many inflection points, and algorithm stability is poor. B* algorithm also has the shortcoming of inaccurate pathfinding. In order to solve the problems existing in A* and B* algorithms, obstacle avoidance regeneration mechanism, pre-exploration mechanism and equivalent waiting strategy are proposed. It adds a bidirectional parallel search mechanism to form an IBP-B* algorithm (Intelligent bi-directional parallel B* routing algorithm). The simulation results show that the speed of IBP-B* algorithm is 182% higher than that of A* algorithm and 366% higher than that of BFS algorithm. Meanwhile, compared with B* algorithm, IBP-B* algorithm improves the pathfinding accuracy of the algorithm.