The multi-scale structures of complex flows have been great challenges to both theoretical and engineer-ing researches, and multi-scale modeling is the natural way in response. Particle methods (PMs) are ideal constit...The multi-scale structures of complex flows have been great challenges to both theoretical and engineer-ing researches, and multi-scale modeling is the natural way in response. Particle methods (PMs) are ideal constitutors and powerful probes of multi-scale models, owing to their physical insight and computational simplicity. In this paper, the role of different PMs for multi-scale modeling of complex flows is critically reviewed and possible development of PMs in this background is prospected, with the emphasis on pseudo-particle modeling (PPM). The performances of some different PMs are compared in simulations and new devel-opment in the fundamentals and applications of PPM is also reported, demonstrating PPM as a unique PM for multi-scale modeling.展开更多
Based on the general relationship described by Cheng between the drag coefficient and the Reynolds number of a particle, a new relationship between the Reynolds number and a dimensionless particle parameter is propose...Based on the general relationship described by Cheng between the drag coefficient and the Reynolds number of a particle, a new relationship between the Reynolds number and a dimensionless particle parameter is proposed. Using a trial-and-error procedure to minimize errors, the coefficients were determined and a formula was developed for predicting the settling velocity of natural sediment particles. This formula has higher prediction accuracy than other published formulas and it is applicable to all Reynolds numbers less than 2× 10^5.展开更多
A model fermion has been produced in a theory of quantum gravity that establishes the existence of a mass gap and half-integral spin. The third requirement for the fermion is electric charge. We herein develop a duali...A model fermion has been produced in a theory of quantum gravity that establishes the existence of a mass gap and half-integral spin. The third requirement for the fermion is electric charge. We herein develop a dualism-based analysis that explains the origin of charge at the fermion scale in a primordial field theory of quantum gravity.展开更多
This paper compares numerical modeling of the effect of stress on solute transport (advection and matrix diffusion) in fractured rocks in which fracture apertures are correlated with fracture lengths. It is mainly m...This paper compares numerical modeling of the effect of stress on solute transport (advection and matrix diffusion) in fractured rocks in which fracture apertures are correlated with fracture lengths. It is mainly motivated by the performance and safety assessments of underground radioactive waste repositories. Five research teams used different approaches to model stress/deformation, flow and transport pro- cesses, based on either discrete fracture network or equivalent continuum models. The simulation results derived by various teams generally demonstrated that rock stresses could significantly influence solute transport processes through stress-induced changes in fracture apertures and associated changes in per- meability. Reasonably good agreement was achieved regarding advection and matrix diffusion given the same fracture network, while some observed discrepancies could be explained by different mechanical or transport modeling approaches.展开更多
基金the National Natural Science Foundation of China(Grant Nos.20336040 , 20490201)the Chinese Academy of Sciences(Grant No.INF105-SCE-2-07).
文摘The multi-scale structures of complex flows have been great challenges to both theoretical and engineer-ing researches, and multi-scale modeling is the natural way in response. Particle methods (PMs) are ideal constitutors and powerful probes of multi-scale models, owing to their physical insight and computational simplicity. In this paper, the role of different PMs for multi-scale modeling of complex flows is critically reviewed and possible development of PMs in this background is prospected, with the emphasis on pseudo-particle modeling (PPM). The performances of some different PMs are compared in simulations and new devel-opment in the fundamentals and applications of PPM is also reported, demonstrating PPM as a unique PM for multi-scale modeling.
基金supported by the National Natural Science Foundation of China (Grant No. 40476039)
文摘Based on the general relationship described by Cheng between the drag coefficient and the Reynolds number of a particle, a new relationship between the Reynolds number and a dimensionless particle parameter is proposed. Using a trial-and-error procedure to minimize errors, the coefficients were determined and a formula was developed for predicting the settling velocity of natural sediment particles. This formula has higher prediction accuracy than other published formulas and it is applicable to all Reynolds numbers less than 2× 10^5.
文摘A model fermion has been produced in a theory of quantum gravity that establishes the existence of a mass gap and half-integral spin. The third requirement for the fermion is electric charge. We herein develop a dualism-based analysis that explains the origin of charge at the fermion scale in a primordial field theory of quantum gravity.
基金the context of the international DECOVALEX-2011 ProjectLBNL from NDA via SERCO TAS was provided through the U.S. Department of Energy Contract No. DE-AC02-05CH11231supported by the Ministry of Education of the Czech Republic within the SGS project No. 7822/115 on the TUL
文摘This paper compares numerical modeling of the effect of stress on solute transport (advection and matrix diffusion) in fractured rocks in which fracture apertures are correlated with fracture lengths. It is mainly motivated by the performance and safety assessments of underground radioactive waste repositories. Five research teams used different approaches to model stress/deformation, flow and transport pro- cesses, based on either discrete fracture network or equivalent continuum models. The simulation results derived by various teams generally demonstrated that rock stresses could significantly influence solute transport processes through stress-induced changes in fracture apertures and associated changes in per- meability. Reasonably good agreement was achieved regarding advection and matrix diffusion given the same fracture network, while some observed discrepancies could be explained by different mechanical or transport modeling approaches.