Aprotic rechargeable lithium-air batteries(LABs)with an ultrahigh theoretical energy density(3,500 Wh kg^(-1))are known as the‘holy grail’of energy storage systems and could replace Li-ion batteries as the next-gene...Aprotic rechargeable lithium-air batteries(LABs)with an ultrahigh theoretical energy density(3,500 Wh kg^(-1))are known as the‘holy grail’of energy storage systems and could replace Li-ion batteries as the next-generation high-capacity batteries if a practical device could be realized.However,only a few researches focus on the battery performance and reactions in the ambient air environment,which is a major obstacle to promote the practical application of LABs.Here,we have summarized the recent research progress on LABs,especially with respect to the Li metal anodes.The chemical and electrochemical deteriorations of the Li metal anode under the ambient air are discussed in detail,and the parasitic reactions involving the cathode and electrolyte during the charge-discharge processes are included.We also provide stability perspectives on protecting the Li metal anodes and propose design principles for realizing high-performance LABs.展开更多
The instabilities of the battery including cathode corrosion/passivation,shuttling effect of the redox mediators,Li anode corrosion,and electrolyte decomposition are major barriers toward the practical implementation ...The instabilities of the battery including cathode corrosion/passivation,shuttling effect of the redox mediators,Li anode corrosion,and electrolyte decomposition are major barriers toward the practical implementation of lithium-oxygen(Li-O2)batteries.Functional materials offer great potential in high performance Li-O2 batteries owing to their functional tailorability of chemical modification for alleviating side reactions and improving catalysis activity,well-defined properties for discharge products storage,and fast mass and electron transfer paths.In this review,instability problems of non-aqueous Li-O2 batteries and recent studies related to the functional materials in tackling the instability issues from rational cathode construction,inhibition of redox mediators(RMs)shuttling,anode protection and novel electrolyte design are illustrated.Future research directions to overcome the critical issues are also proposed for this promising battery technology.The instability issues and the related strategies with functional materials based on the comprehensive consideration of all battery components proposed in this review provide the systematic,deep understanding and rational design of functional materials for Li-O2 batteries,which is beneficial to achieving the practical Li-O2 batteries.展开更多
基金financially supported by the National Key R&D Program of China(2020YFE0204500)the National Natural Science Foundation of China(52071311,52271140)+2 种基金Jilin Province Science and Technology Development Plan Funding Project(20220201112GX)Changchun Science and Technology Development Plan Funding Project(21ZY06)Youth Innovation Promotion Association CAS(2020230,2021223)。
文摘Aprotic rechargeable lithium-air batteries(LABs)with an ultrahigh theoretical energy density(3,500 Wh kg^(-1))are known as the‘holy grail’of energy storage systems and could replace Li-ion batteries as the next-generation high-capacity batteries if a practical device could be realized.However,only a few researches focus on the battery performance and reactions in the ambient air environment,which is a major obstacle to promote the practical application of LABs.Here,we have summarized the recent research progress on LABs,especially with respect to the Li metal anodes.The chemical and electrochemical deteriorations of the Li metal anode under the ambient air are discussed in detail,and the parasitic reactions involving the cathode and electrolyte during the charge-discharge processes are included.We also provide stability perspectives on protecting the Li metal anodes and propose design principles for realizing high-performance LABs.
基金This work was supported by the National Natural Science Foundation of China(Nos.51771177,51972141,21621001,21835002)the Jilin Province Science and Technology Development Program,China(No.20190303104SF)+3 种基金the Jilin Province/Jilin University Co-construction Project-Funds for New Materials,China(No.SXGJSF2017-3)the Science and Technology Breakthrough Plan of Henan Province,China(Nos.202102210242,212102210186)the Key Scientific Research Project of Higher Education of Henan Province,China(No.21A150055)the Undergraduate Innovation and Entrepreneurship Training Program of Zhengzhou University of Technology,China(No.201911068020).
文摘The instabilities of the battery including cathode corrosion/passivation,shuttling effect of the redox mediators,Li anode corrosion,and electrolyte decomposition are major barriers toward the practical implementation of lithium-oxygen(Li-O2)batteries.Functional materials offer great potential in high performance Li-O2 batteries owing to their functional tailorability of chemical modification for alleviating side reactions and improving catalysis activity,well-defined properties for discharge products storage,and fast mass and electron transfer paths.In this review,instability problems of non-aqueous Li-O2 batteries and recent studies related to the functional materials in tackling the instability issues from rational cathode construction,inhibition of redox mediators(RMs)shuttling,anode protection and novel electrolyte design are illustrated.Future research directions to overcome the critical issues are also proposed for this promising battery technology.The instability issues and the related strategies with functional materials based on the comprehensive consideration of all battery components proposed in this review provide the systematic,deep understanding and rational design of functional materials for Li-O2 batteries,which is beneficial to achieving the practical Li-O2 batteries.