The development of machine learning in complex system is hindered by two problems nowadays.The first problem is the inefficiency of exploration in state and action space,which leads to the data-hungry of some state-of...The development of machine learning in complex system is hindered by two problems nowadays.The first problem is the inefficiency of exploration in state and action space,which leads to the data-hungry of some state-of-art data-driven algorithm.The second problem is the lack of a general theory which can be used to analyze and implement a complex learning system.In this paper,we proposed a general methods that can address both two issues.We combine the concepts of descriptive learning,predictive learning,and prescriptive learning into a uniform framework,so as to build a parallel system allowing learning system improved by self-boosting.Formulating a new perspective of data,knowledge and action,we provide a new methodology called parallel learning to design machine learning system for real-world problems.展开更多
In this paper, a new machine learning framework is developed for complex system control, called parallel reinforcement learning. To overcome data deficiency of current data-driven algorithms, a parallel system is buil...In this paper, a new machine learning framework is developed for complex system control, called parallel reinforcement learning. To overcome data deficiency of current data-driven algorithms, a parallel system is built to improve complex learning system by self-guidance. Based on the Markov chain(MC) theory, we combine the transfer learning, predictive learning, deep learning and reinforcement learning to tackle the data and action processes and to express the knowledge. Parallel reinforcement learning framework is formulated and several case studies for real-world problems are finally introduced.展开更多
基金supported in part by the National Natural Science Foundation of China(91520301)
文摘The development of machine learning in complex system is hindered by two problems nowadays.The first problem is the inefficiency of exploration in state and action space,which leads to the data-hungry of some state-of-art data-driven algorithm.The second problem is the lack of a general theory which can be used to analyze and implement a complex learning system.In this paper,we proposed a general methods that can address both two issues.We combine the concepts of descriptive learning,predictive learning,and prescriptive learning into a uniform framework,so as to build a parallel system allowing learning system improved by self-boosting.Formulating a new perspective of data,knowledge and action,we provide a new methodology called parallel learning to design machine learning system for real-world problems.
基金supported in part by the National Natural Science Foundation of China(61503380)the Natural Science Foundation of Guangdong Province,China(2015A030310187)
文摘In this paper, a new machine learning framework is developed for complex system control, called parallel reinforcement learning. To overcome data deficiency of current data-driven algorithms, a parallel system is built to improve complex learning system by self-guidance. Based on the Markov chain(MC) theory, we combine the transfer learning, predictive learning, deep learning and reinforcement learning to tackle the data and action processes and to express the knowledge. Parallel reinforcement learning framework is formulated and several case studies for real-world problems are finally introduced.