In order to improve the corrosion resistance and increase the service lifetime of P110 steel during operation,four chromizing coatings were formed onto its surface with/without addition of rare earths via pack cementa...In order to improve the corrosion resistance and increase the service lifetime of P110 steel during operation,four chromizing coatings were formed onto its surface with/without addition of rare earths via pack cementation process.The surface morphologies and microstructures of the chromizing coatings were observed using scanning electron microscopy(SEM),and the phase constitutions were investigated by X-ray diffraction(XRD).Electrochemical corrosion behavior of the chromizing coatings in simulated oilfield ...展开更多
The halide-activated pack cementation method is utilized to deposit aluminide coat- ings on TiAl alloys. Emphasis is placed on the effect of alloying elements on the aluminizing behavior of TiAl alloy. The addition of...The halide-activated pack cementation method is utilized to deposit aluminide coat- ings on TiAl alloys. Emphasis is placed on the effect of alloying elements on the aluminizing behavior of TiAl alloy. The addition of a small amount of Nb or Cr in the TiAl improves significantly the aluminizing kinetics of TiAl alloys by increasing the solid-state division of Al through the formation of stable TiAl3 layer. The TiAl3 layer formed on the TiAl alloyed with Nb or Cr has better toughness than the TiAl3 formed on the non-alloyed TiAl. The reason for better toughness of the coating formed on TiAl is that partial TiAl3 with tetragonal structure was changed to high symmetry cubic L12 structure since Nb or Cr was dissolved into TiAl3. The TiAl3 layer formed on the TiAl alloyed with Nb or Cr has much better oxidation resistance than the TiAl3 layer formed on the non-alloyed TiAl. It is attributed to change in the crystal structure of TiAl3 from the brittle tetragonal DO22 to the ductile cubic L12 by addition of small amount of Nb or Cr.展开更多
The pack cementation was employed to produce rare earth modified chromium coatings on P110 steel aiming at improving its performance and increasing the usage lifetime during operation. The orthogonal array design (OA...The pack cementation was employed to produce rare earth modified chromium coatings on P110 steel aiming at improving its performance and increasing the usage lifetime during operation. The orthogonal array design (OAD) was applied to set experiments. Contents of NH4Cl, types of RE, contents of RE, test temperature and soaking time were the main factors, and each factor was endowed with four levels. While the range analysis and analysis of variance were used to investigate the results of OAD tests on thickness and wear resistance. The results indicated that for a promising coating with higher thickness value and excellent anti-wear property, the test temperature was the most significant process factor. The potential promising conditions for chromizing treatment were: adding 1% NH4Cl and 1% LaCl3, maintaining the test temperature at 1000 oC for 8 h. The results of verification showed that the coating formed under the optimal process parameter had a valid thickness of 28 μm and a reduction of 0.32 mg in wear resistance test.展开更多
The pack cementation was employed to improve the electrochemical corrosion resistance of 304 stainless steel via CeO2- Cr modified Ti coatings. Continuous coatings were formed on 304 stainless steel surface by this me...The pack cementation was employed to improve the electrochemical corrosion resistance of 304 stainless steel via CeO2- Cr modified Ti coatings. Continuous coatings were formed on 304 stainless steel surface by this method. A series of electrochemical experiments were carried out to investigate the corrosion resistance of 304 stainless steel, Ti coating and CeO2-Cr/Ti coatings. The sample surface was investigated by scanning electron microscopy (SEM). The phases of sample surface were detected by X-ray diffraction (XRD). It was concluded from all the outcomes that the Corrosion resistance of the samples could be sorted in the following sequence: CeO2-Cr/Ti coatings〉Ti coating〉304 stainless steel.展开更多
基金supported by the Science and Technology Programs for Research and Development of Shaanxi Province (2008K01-31)
文摘In order to improve the corrosion resistance and increase the service lifetime of P110 steel during operation,four chromizing coatings were formed onto its surface with/without addition of rare earths via pack cementation process.The surface morphologies and microstructures of the chromizing coatings were observed using scanning electron microscopy(SEM),and the phase constitutions were investigated by X-ray diffraction(XRD).Electrochemical corrosion behavior of the chromizing coatings in simulated oilfield ...
基金The National Natural Science Foundation of ChinaThe Korea Science and Engineering Foundation
文摘The halide-activated pack cementation method is utilized to deposit aluminide coat- ings on TiAl alloys. Emphasis is placed on the effect of alloying elements on the aluminizing behavior of TiAl alloy. The addition of a small amount of Nb or Cr in the TiAl improves significantly the aluminizing kinetics of TiAl alloys by increasing the solid-state division of Al through the formation of stable TiAl3 layer. The TiAl3 layer formed on the TiAl alloyed with Nb or Cr has better toughness than the TiAl3 formed on the non-alloyed TiAl. The reason for better toughness of the coating formed on TiAl is that partial TiAl3 with tetragonal structure was changed to high symmetry cubic L12 structure since Nb or Cr was dissolved into TiAl3. The TiAl3 layer formed on the TiAl alloyed with Nb or Cr has much better oxidation resistance than the TiAl3 layer formed on the non-alloyed TiAl. It is attributed to change in the crystal structure of TiAl3 from the brittle tetragonal DO22 to the ductile cubic L12 by addition of small amount of Nb or Cr.
基金supported by the Science and Technology Program for Research and Development of Shaanxi Province (2008K01-31)
文摘The pack cementation was employed to produce rare earth modified chromium coatings on P110 steel aiming at improving its performance and increasing the usage lifetime during operation. The orthogonal array design (OAD) was applied to set experiments. Contents of NH4Cl, types of RE, contents of RE, test temperature and soaking time were the main factors, and each factor was endowed with four levels. While the range analysis and analysis of variance were used to investigate the results of OAD tests on thickness and wear resistance. The results indicated that for a promising coating with higher thickness value and excellent anti-wear property, the test temperature was the most significant process factor. The potential promising conditions for chromizing treatment were: adding 1% NH4Cl and 1% LaCl3, maintaining the test temperature at 1000 oC for 8 h. The results of verification showed that the coating formed under the optimal process parameter had a valid thickness of 28 μm and a reduction of 0.32 mg in wear resistance test.
基金Project supported by Shanxi Province Programs for Science and Technology Development(20110321051)Shanxi Province Natural Science Foundation(2013021013-5,2012011021-3)
文摘The pack cementation was employed to improve the electrochemical corrosion resistance of 304 stainless steel via CeO2- Cr modified Ti coatings. Continuous coatings were formed on 304 stainless steel surface by this method. A series of electrochemical experiments were carried out to investigate the corrosion resistance of 304 stainless steel, Ti coating and CeO2-Cr/Ti coatings. The sample surface was investigated by scanning electron microscopy (SEM). The phases of sample surface were detected by X-ray diffraction (XRD). It was concluded from all the outcomes that the Corrosion resistance of the samples could be sorted in the following sequence: CeO2-Cr/Ti coatings〉Ti coating〉304 stainless steel.