The use of renewable energy is growing significantly in the world. In front of the growing demand for electric energy, essentially for the needs of remote, isolated and mountainous regions, photovoltaic systems, espec...The use of renewable energy is growing significantly in the world. In front of the growing demand for electric energy, essentially for the needs of remote, isolated and mountainous regions, photovoltaic systems, especially water pumping systems, are beginning to emerge in large applications. In this sense, the proposed study deals with the problem of the water level regulation in the photovoltaic pumping system. It is in this context that the interest in this paper is dictated by the need to use an existing energy source on the site. Still in this light, it is important to note that, often, the calculation of the size of the GPV that feeds the pumping system and the pump involves a certain degree of uncertainty, mainly due to two main reasons: the first is related to randomness of solar radiation which is often little known and the second is related to the difficulty to estimate the water needs. This is why, on the one hand, the realization of such a system has made it possible to show the possibility of determining the projected quantity for water storage. Similarly, it has shown that the prediction of this quantity of water can be calculated by a simple analytical method based on numerical computation. Thus, it was also shown for this pumping system, thanks to graphical analysis methods, developing autonomy, reliability and good performance. In this sense, this experience opens the door for a practical and economical solution to the problem of lack of water, especially in our regions. Measurements made on the studied system prove that the designed approach improves the efficiency. Finally, it is also expected to draw further conclusions for the operation of these systems in similar sites.展开更多
Many papers exploiting the various MPPT (maximum power point tracking) techniques in PV (photovoltaic) applications, from the simple to the most complicated, can be found in literature. However, these techniques m...Many papers exploiting the various MPPT (maximum power point tracking) techniques in PV (photovoltaic) applications, from the simple to the most complicated, can be found in literature. However, these techniques may not always be easy to implement in industrial applications. The main challenge of this paper is to model and implement the P & O (perturb and observe) algorithm in a low-cost PV-powered pumping system. To that end, a comparative investigation of the performance characteristics of the most popular MPPT methods, such as FOCV (fractional open circuit voltage), FSCC (fractional short circuit current), FLC (fuzzy logic control), ANN (artificial neural network) and INC (incremental conductance) is presented. This analysis is helpful to highlight the relevance of the P & O technique taking better account of complexity, difficulty of implementation and cost considerations in water pumping applications. The targeted PV-powered pumping system is based on a single-phase induction motor supplied by a three-phase inverter controlled by the DTC (direct torque control) technique. This stand-alone PV system is dedicated to water pumping, especially in rural areas that have no access to national grids but have sufficient amount of solar radiation. Simulation modeling (Matlab/Simulink) and experimental results are presented to demonstrate the relevance of the system.展开更多
文摘The use of renewable energy is growing significantly in the world. In front of the growing demand for electric energy, essentially for the needs of remote, isolated and mountainous regions, photovoltaic systems, especially water pumping systems, are beginning to emerge in large applications. In this sense, the proposed study deals with the problem of the water level regulation in the photovoltaic pumping system. It is in this context that the interest in this paper is dictated by the need to use an existing energy source on the site. Still in this light, it is important to note that, often, the calculation of the size of the GPV that feeds the pumping system and the pump involves a certain degree of uncertainty, mainly due to two main reasons: the first is related to randomness of solar radiation which is often little known and the second is related to the difficulty to estimate the water needs. This is why, on the one hand, the realization of such a system has made it possible to show the possibility of determining the projected quantity for water storage. Similarly, it has shown that the prediction of this quantity of water can be calculated by a simple analytical method based on numerical computation. Thus, it was also shown for this pumping system, thanks to graphical analysis methods, developing autonomy, reliability and good performance. In this sense, this experience opens the door for a practical and economical solution to the problem of lack of water, especially in our regions. Measurements made on the studied system prove that the designed approach improves the efficiency. Finally, it is also expected to draw further conclusions for the operation of these systems in similar sites.
文摘Many papers exploiting the various MPPT (maximum power point tracking) techniques in PV (photovoltaic) applications, from the simple to the most complicated, can be found in literature. However, these techniques may not always be easy to implement in industrial applications. The main challenge of this paper is to model and implement the P & O (perturb and observe) algorithm in a low-cost PV-powered pumping system. To that end, a comparative investigation of the performance characteristics of the most popular MPPT methods, such as FOCV (fractional open circuit voltage), FSCC (fractional short circuit current), FLC (fuzzy logic control), ANN (artificial neural network) and INC (incremental conductance) is presented. This analysis is helpful to highlight the relevance of the P & O technique taking better account of complexity, difficulty of implementation and cost considerations in water pumping applications. The targeted PV-powered pumping system is based on a single-phase induction motor supplied by a three-phase inverter controlled by the DTC (direct torque control) technique. This stand-alone PV system is dedicated to water pumping, especially in rural areas that have no access to national grids but have sufficient amount of solar radiation. Simulation modeling (Matlab/Simulink) and experimental results are presented to demonstrate the relevance of the system.