Interface characteristics possess very important influence on the performance of thin film devices. ITO/ PTCDA/p-Si thin film device was set up with vacuum evaporation and sputter deposition method. The surface and in...Interface characteristics possess very important influence on the performance of thin film devices. ITO/ PTCDA/p-Si thin film device was set up with vacuum evaporation and sputter deposition method. The surface and interface electron states of ITO/PTCDA/p-Si were investigated by X-ray photoelectron spectroscopy (XPS) and argon ion beam etch techniques. Results indicate that at the interface of ITO/PTODA/p- Si,not only ITO/PTCDA-Si but also PDCDA-Si can produce diffusion. Moreover, the XPS spectra of each atom appear chemical shifts, and the chemical shifts of C1s and O1s are more remarkable.展开更多
基金Project is supported by the National Natural Science Foundationof China (Grant No 60076023)
文摘Interface characteristics possess very important influence on the performance of thin film devices. ITO/ PTCDA/p-Si thin film device was set up with vacuum evaporation and sputter deposition method. The surface and interface electron states of ITO/PTCDA/p-Si were investigated by X-ray photoelectron spectroscopy (XPS) and argon ion beam etch techniques. Results indicate that at the interface of ITO/PTODA/p- Si,not only ITO/PTCDA-Si but also PDCDA-Si can produce diffusion. Moreover, the XPS spectra of each atom appear chemical shifts, and the chemical shifts of C1s and O1s are more remarkable.