The phosphoinositide 3-kinase-AKT-mammalian target of rapamycin (PI3K-AKT-mTOR) pathway is a frequently hyperactivated pathway in cancer and is important for tumor cell growth and survival. The development of targeted...The phosphoinositide 3-kinase-AKT-mammalian target of rapamycin (PI3K-AKT-mTOR) pathway is a frequently hyperactivated pathway in cancer and is important for tumor cell growth and survival. The development of targeted therapies against mTOR, a vital substrate along this pathway, led to the approval of allosteric inhibitors, including everolimus and temsirolimus, for the treatment of breast, renal, and pancreatic cancers. However, the suboptimal duration of response in unselected patients remains an unresolved issue. Numerous novel therapies against critical nodes of this pathway are therefore being actively investigated in the clinic in multiple tumour types. In this review, we focus on the progress of these agents in clinical development along with their biological rationale, the need of predictive biomarkers and various combination strategies, which will be useful in counteracting the mechanisms of resistance to this class of drugs.展开更多
Background:Diabetic wounds are one of the most common and serious complications of diabetes mellitus,characterized by the dysfunction of wound-healing-related cells in quantity and quality.Our previous studies reveale...Background:Diabetic wounds are one of the most common and serious complications of diabetes mellitus,characterized by the dysfunction of wound-healing-related cells in quantity and quality.Our previous studies revealed that human amniotic epithelial cells(hAECs)could promote diabetic wound healing by paracrine action.Interestingly,numerous studies demonstrated that exosomes derived from stem cells are the critical paracrine vehicles for stem cell therapy.However,whether exosomes derived from hAECs(hAECs-Exos)mediate the effects of hAECs on diabetic wound healing remains unclear.This study aimed to investigate the biological effects of hAECs-Exos on diabetic wound healing and preliminarily elucidate the underlying mechanism.Methods:hAECs-Exos were isolated by ultracentrifugation and identified by transmission electron microscopy,dynamic light scattering and flow cytometry.A series of in vitro functional analyses were performed to assess the regulatory effects of hAECs-Exos on human fibroblasts(HFBs)and human umbilical vein endothelial cells(HUVECs)in a high-glycemic microenvironment.Highthroughput sequencing and bioinformatics analyses were conducted to speculate the related mechanisms of actions of hAECs-Exos on HFBs and HUVECs.Subsequently,the role of the candidate signaling pathway of hAECs-Exos in regulating the function of HUVECs and HFBs,as well as in diabetic wound healing,was assessed.Results:hAECs-Exos presented a cup-or sphere-shaped morphology with a mean diameter of 105.89±10.36 nm,were positive for CD63 and TSG101 and could be internalized by HFBs and HUVECs.After that,hAECs-Exos not only significantly promoted the proliferation and migration of HFBs,but also facilitated the angiogenic activity of HUVECs in vitro.High-throughput sequencing revealed enriched miRNAs of hAECs-Exos involved in wound healing.Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses have shown that the target genes of the top 15 miRNAs were highly enriched in the PI3K-AKT pathway.Further functional studies demonst展开更多
基金The Drug Development Unit of the Royal Marsden NHS Foundation TrustThe Institute of Cancer Research is supported in part by a program grant from Cancer Research U.K.+1 种基金Support was also provided by the Experimental Cancer Medicine Centre (to The Institute of Cancer Research)the National Institute for Health Research Biomedical Research Centre (jointly to the Royal Marsden NHS Foundation Trust and The Institute of Cancer Research)
文摘The phosphoinositide 3-kinase-AKT-mammalian target of rapamycin (PI3K-AKT-mTOR) pathway is a frequently hyperactivated pathway in cancer and is important for tumor cell growth and survival. The development of targeted therapies against mTOR, a vital substrate along this pathway, led to the approval of allosteric inhibitors, including everolimus and temsirolimus, for the treatment of breast, renal, and pancreatic cancers. However, the suboptimal duration of response in unselected patients remains an unresolved issue. Numerous novel therapies against critical nodes of this pathway are therefore being actively investigated in the clinic in multiple tumour types. In this review, we focus on the progress of these agents in clinical development along with their biological rationale, the need of predictive biomarkers and various combination strategies, which will be useful in counteracting the mechanisms of resistance to this class of drugs.
基金funded by the National Key R&D Program of China(2019YFA0110503)the National Nature Science Foundation of China(81701905,81930057,81772076,81871559,81571897)+5 种基金the Shanghai Pujiang Program(17PJD043)the Clinical Key Discipline Project of Shanghai and Chinathe Shanghai Health System Excellent Talent Training Program(2017BR037)the Fujian Burn Medical Center([2017]171)the Key Clinical Specialty Discipline Construction Programme of Fujian,China([2012]149)the Fujian Provincial Key Laboratory of Burn and Trauma,China.
文摘Background:Diabetic wounds are one of the most common and serious complications of diabetes mellitus,characterized by the dysfunction of wound-healing-related cells in quantity and quality.Our previous studies revealed that human amniotic epithelial cells(hAECs)could promote diabetic wound healing by paracrine action.Interestingly,numerous studies demonstrated that exosomes derived from stem cells are the critical paracrine vehicles for stem cell therapy.However,whether exosomes derived from hAECs(hAECs-Exos)mediate the effects of hAECs on diabetic wound healing remains unclear.This study aimed to investigate the biological effects of hAECs-Exos on diabetic wound healing and preliminarily elucidate the underlying mechanism.Methods:hAECs-Exos were isolated by ultracentrifugation and identified by transmission electron microscopy,dynamic light scattering and flow cytometry.A series of in vitro functional analyses were performed to assess the regulatory effects of hAECs-Exos on human fibroblasts(HFBs)and human umbilical vein endothelial cells(HUVECs)in a high-glycemic microenvironment.Highthroughput sequencing and bioinformatics analyses were conducted to speculate the related mechanisms of actions of hAECs-Exos on HFBs and HUVECs.Subsequently,the role of the candidate signaling pathway of hAECs-Exos in regulating the function of HUVECs and HFBs,as well as in diabetic wound healing,was assessed.Results:hAECs-Exos presented a cup-or sphere-shaped morphology with a mean diameter of 105.89±10.36 nm,were positive for CD63 and TSG101 and could be internalized by HFBs and HUVECs.After that,hAECs-Exos not only significantly promoted the proliferation and migration of HFBs,but also facilitated the angiogenic activity of HUVECs in vitro.High-throughput sequencing revealed enriched miRNAs of hAECs-Exos involved in wound healing.Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses have shown that the target genes of the top 15 miRNAs were highly enriched in the PI3K-AKT pathway.Further functional studies demonst