Chemical precipitation to form magnesium ammonium phosphate(MAP) is an effective technology for recovering ammonium nitrogen(NH4+-N).In the present research,we investigated the thermodynamic modeling of the PHREE...Chemical precipitation to form magnesium ammonium phosphate(MAP) is an effective technology for recovering ammonium nitrogen(NH4+-N).In the present research,we investigated the thermodynamic modeling of the PHREEQC program for NH4+-N recovery to evaluate the effect of reaction factors on MAP precipitation.The case study of NH4+-N recovery from coking wastewater was conducted to provide a comparison.Response surface methodology(RSM) was applied to assist in understanding the relative significance of reaction factors and the interactive effects of solution conditions.Thermodynamic modeling indicated that the saturation index(SI) of MAP followed a polynomial function of pH.The SI of MAP increased logarithmically with the Mg2+/NH4+ molar ratio(Mg/N) and the initial NH4+-N concentration(CN),respectively,while it decreased with an increase in Ca2+/NH4+ and CO32?/NH4+ molar ratios(Ca/N and CO32?/N),respectively.The trends for NH4+-N removal at different pH and Mg/N levels were similar to the thermodynamic modeling predictions.The RSM analysis indicated that the factors including pH,Mg/N,CN,Ca/N,(Mg/N)×(CO32?/N),(pH)2,(Mg/N)2,and(CN)2 were significant.Response surface plots were useful for understanding the interaction effects on NH4+-N recovery.展开更多
PHREEQC is a geochemical model to study aqueous ion reaction equilibrium in water systems. In this paper, PHREEQC was used to calculate concentrations of main elements (Si, Na, B, Al, Sr, Cs, Fe and Nd) leached from s...PHREEQC is a geochemical model to study aqueous ion reaction equilibrium in water systems. In this paper, PHREEQC was used to calculate concentrations of main elements (Si, Na, B, Al, Sr, Cs, Fe and Nd) leached from simulated HLW-glass in solution. The experiments were preformed in deionized-water or simulated underground water at 90℃ or 150℃ under low oxygen atmosphere. The calculated results agreed well with the experimental results.展开更多
基金supported by the National High Technology Research and Development Program(863) of China(No.2009AA033003)the National Water Pollution Control and Management Science and Technology Breakthrough Program(No.2009ZX07106-004)+2 种基金the Scientific Research Foundation of Graduate School of Jiangsu Province(No.CX09B 013Z)the Key Technology Research and Development Program of Jiangsu Province (No.BE2008668)the Ph.D Candidate Academic Foundation of Ministry of Education of China
文摘Chemical precipitation to form magnesium ammonium phosphate(MAP) is an effective technology for recovering ammonium nitrogen(NH4+-N).In the present research,we investigated the thermodynamic modeling of the PHREEQC program for NH4+-N recovery to evaluate the effect of reaction factors on MAP precipitation.The case study of NH4+-N recovery from coking wastewater was conducted to provide a comparison.Response surface methodology(RSM) was applied to assist in understanding the relative significance of reaction factors and the interactive effects of solution conditions.Thermodynamic modeling indicated that the saturation index(SI) of MAP followed a polynomial function of pH.The SI of MAP increased logarithmically with the Mg2+/NH4+ molar ratio(Mg/N) and the initial NH4+-N concentration(CN),respectively,while it decreased with an increase in Ca2+/NH4+ and CO32?/NH4+ molar ratios(Ca/N and CO32?/N),respectively.The trends for NH4+-N removal at different pH and Mg/N levels were similar to the thermodynamic modeling predictions.The RSM analysis indicated that the factors including pH,Mg/N,CN,Ca/N,(Mg/N)×(CO32?/N),(pH)2,(Mg/N)2,and(CN)2 were significant.Response surface plots were useful for understanding the interaction effects on NH4+-N recovery.
文摘PHREEQC is a geochemical model to study aqueous ion reaction equilibrium in water systems. In this paper, PHREEQC was used to calculate concentrations of main elements (Si, Na, B, Al, Sr, Cs, Fe and Nd) leached from simulated HLW-glass in solution. The experiments were preformed in deionized-water or simulated underground water at 90℃ or 150℃ under low oxygen atmosphere. The calculated results agreed well with the experimental results.