The extoic structure of 29P was investigated by measuring its magnetic moment in the ground state with β-NMR method. We got the experimental value of 1.2346 μN after diamagnetism correction. It is very close to the ...The extoic structure of 29P was investigated by measuring its magnetic moment in the ground state with β-NMR method. We got the experimental value of 1.2346 μN after diamagnetism correction. It is very close to the calculated value of 1.1009 μN computed with shell model. The shell model calculation also gave a proton density distribution of 29P with a long tail. The present results show that 2s1/2 proton in the 29P may lead to the proton-skin structure.展开更多
Background: Peritoneal fibrosis is the primary reason that patients with end-stage renal disease (ESRD) have to cease peritoneal dialysis. Peritonitis caused by Gram-negative bacteria such as Escherichia coli (E. coli...Background: Peritoneal fibrosis is the primary reason that patients with end-stage renal disease (ESRD) have to cease peritoneal dialysis. Peritonitis caused by Gram-negative bacteria such as Escherichia coli (E. coli) were on the rise. We had previously shown that matrine inhibited the formation of biofilm by E. coli. However, the role of matrine on the epithelial-mesenchymal transition (EMT) in peritoneal mesothelial cells under chronic inflammatory conditions is still unknown. Methods: We cultured human peritoneal mesothelial cells (HPMCs) with lipopolysaccharide (LPS) to induce an environment that mimicked peritonitis and investigated whether matrine could inhibit LPS-induced EMT in these cells. In addition, we investigated the change in expression levels of the miR-29b and miR-129-5p. Results: We found that 10 jjig/ml of LPS induced EMT in HPMCs. Matrine inhibited LPS-induced EMT in HPMCs in a dose-dependent manner. We observed that treatment with matrine increased the expression of E-cadherin (F= 50.993, P< 0.01), and decreased the expression of alpha-smooth muscle actin (F= 32.913, P < 0.01). Furthermore, we found that LPS reduced the expression levels of miR- 29b and miR-129-5P in HPMCs, while matrine promoted the expression levels of miR-29b and miR-129-5P. Conclusions: Matrine could inhibit LPS-induced EMT in HPMCs and reverse LPS inhibited expressions of miR-29 b and miR-129- 5P in HPMCs, ultimately reduce peritoneal fibrosis. These findings provide a potential theoretical basis for using matrine in the prevention and treatment of peritoneal fibrosis.展开更多
基金Supported by National Natural Science Foundation of China (10505032,10435010)
文摘The extoic structure of 29P was investigated by measuring its magnetic moment in the ground state with β-NMR method. We got the experimental value of 1.2346 μN after diamagnetism correction. It is very close to the calculated value of 1.1009 μN computed with shell model. The shell model calculation also gave a proton density distribution of 29P with a long tail. The present results show that 2s1/2 proton in the 29P may lead to the proton-skin structure.
基金grants from the National Natural Science Foundation of China (No. 81360111 and No. 81660133).
文摘Background: Peritoneal fibrosis is the primary reason that patients with end-stage renal disease (ESRD) have to cease peritoneal dialysis. Peritonitis caused by Gram-negative bacteria such as Escherichia coli (E. coli) were on the rise. We had previously shown that matrine inhibited the formation of biofilm by E. coli. However, the role of matrine on the epithelial-mesenchymal transition (EMT) in peritoneal mesothelial cells under chronic inflammatory conditions is still unknown. Methods: We cultured human peritoneal mesothelial cells (HPMCs) with lipopolysaccharide (LPS) to induce an environment that mimicked peritonitis and investigated whether matrine could inhibit LPS-induced EMT in these cells. In addition, we investigated the change in expression levels of the miR-29b and miR-129-5p. Results: We found that 10 jjig/ml of LPS induced EMT in HPMCs. Matrine inhibited LPS-induced EMT in HPMCs in a dose-dependent manner. We observed that treatment with matrine increased the expression of E-cadherin (F= 50.993, P< 0.01), and decreased the expression of alpha-smooth muscle actin (F= 32.913, P < 0.01). Furthermore, we found that LPS reduced the expression levels of miR- 29b and miR-129-5P in HPMCs, while matrine promoted the expression levels of miR-29b and miR-129-5P. Conclusions: Matrine could inhibit LPS-induced EMT in HPMCs and reverse LPS inhibited expressions of miR-29 b and miR-129- 5P in HPMCs, ultimately reduce peritoneal fibrosis. These findings provide a potential theoretical basis for using matrine in the prevention and treatment of peritoneal fibrosis.