Whereas the close structural homology between human plasminogen and apolipoprotein(a) has been known for a number of years only recent studies have revealed that both proteins carry linked oxidized phospholipids that ...Whereas the close structural homology between human plasminogen and apolipoprotein(a) has been known for a number of years only recent studies have revealed that both proteins carry linked oxidized phospholipids that may modify the function of these proteins. Future studies should provide a better understanding of oxidized phospholipid adducts and the role played by lipoprotein-associated phospholipase A2 for which cleavage specificity has been established when these modified lipids are in a free form.展开更多
Lipoprotein(a) [Lp(a)] is composed of a low density lipoprotein(LDL)-like particle to which apolipoprotein(a)[apo(a)] is linked by a single disulfide bridge. Lp(a) is considered a causal risk factor for is...Lipoprotein(a) [Lp(a)] is composed of a low density lipoprotein(LDL)-like particle to which apolipoprotein(a)[apo(a)] is linked by a single disulfide bridge. Lp(a) is considered a causal risk factor for ischemic cardiovascular disease(CVD) and calcific aortic valve stenosis(CAVS). The evidence for a causal role of Lp(a) in CVD and CAVS is based on data from large epidemiological databases, mendelian randomization studies, and genome-wide association studies. Despite the well-established role of Lp(a) as a causal risk factor for CVD and CAVS, the underlying mechanisms are not well understood. A key role in the Lp(a) functionality may be played by its oxidized phospholipids(OxPL) content. Importantly, most of circulating OxPL are associated with Lp(a); however, the underlying mechanisms leading to this preferential sequestration of OxPL on Lp(a) over the other lipoproteins,are mostly unknown. Several studies support the hypothesis that the risk of Lp(a) is primarily driven by its OxPL content.An important role in Lp(a) functionality may be played by the lipoprotein-associated phospholipase A_2(Lp-PLA_2),an enzyme that catalyzes the degradation of OxPL and is bound to plasma lipoproteins including Lp(a). The present review article discusses new data on the pathophysiological role of Lp(a) and particularly focuses on the functional role of OxPL and Lp-PLA_2 associated with Lp(a).展开更多
基金supported by grants from the National Natural Science Foundation of China(No.81770855)the Taishan Scholars Foundation of Shandong Province(No.ts201511057)Academic Promotion Program of Shandong First Medical University&Shandong Academy of Medical Sciences,China(No.2019QL010,2019PT009)。
文摘Whereas the close structural homology between human plasminogen and apolipoprotein(a) has been known for a number of years only recent studies have revealed that both proteins carry linked oxidized phospholipids that may modify the function of these proteins. Future studies should provide a better understanding of oxidized phospholipid adducts and the role played by lipoprotein-associated phospholipase A2 for which cleavage specificity has been established when these modified lipids are in a free form.
文摘Lipoprotein(a) [Lp(a)] is composed of a low density lipoprotein(LDL)-like particle to which apolipoprotein(a)[apo(a)] is linked by a single disulfide bridge. Lp(a) is considered a causal risk factor for ischemic cardiovascular disease(CVD) and calcific aortic valve stenosis(CAVS). The evidence for a causal role of Lp(a) in CVD and CAVS is based on data from large epidemiological databases, mendelian randomization studies, and genome-wide association studies. Despite the well-established role of Lp(a) as a causal risk factor for CVD and CAVS, the underlying mechanisms are not well understood. A key role in the Lp(a) functionality may be played by its oxidized phospholipids(OxPL) content. Importantly, most of circulating OxPL are associated with Lp(a); however, the underlying mechanisms leading to this preferential sequestration of OxPL on Lp(a) over the other lipoproteins,are mostly unknown. Several studies support the hypothesis that the risk of Lp(a) is primarily driven by its OxPL content.An important role in Lp(a) functionality may be played by the lipoprotein-associated phospholipase A_2(Lp-PLA_2),an enzyme that catalyzes the degradation of OxPL and is bound to plasma lipoproteins including Lp(a). The present review article discusses new data on the pathophysiological role of Lp(a) and particularly focuses on the functional role of OxPL and Lp-PLA_2 associated with Lp(a).