One of the major causes of defective sperm function is oxidative stress, which not only disrupts the integrity of sperm DNA but also limits the fertilizing potential of these cells as a result of collateral damage to ...One of the major causes of defective sperm function is oxidative stress, which not only disrupts the integrity of sperm DNA but also limits the fertilizing potential of these cells as a result of collateral damage to proteins and lipids in the sperm plasma membrane. The origins of such oxidative stress appear to involve the sperm mitochondria, which have a tendency to generate high leve|s of superoxide anion as a prelude to entering the intrinsic apoptotic cascade. Unfortunately, these cells have very little capacity to respond to such an attack because they only possess the first enzyme in the base excision repair (BER) pathway, 8-oxoguanine glycosylase 1 (OGG1). The latter successfully creates an abasic site, but the spermatozoa cannot process the oxidative lesion further because they lack the downstream proteins (APE1, XRCC1) needed to complete the repair process. It is the responsibility of the oocyte to continue the BER pathway prior to initiation of S-phase of the first mitotic division. If a mistake is made by the oocyte at this stage of development, a mutation will be created that will be represented in every cell in the body. Such mechanisms may explain the increase in childhood cancers and other diseases observed in the offspring of males who have suffered oxidative stress in their germ line as a consequence of age, environmental or lifestyle factors. The high prevalence of oxidative DNA damage in the spermatozoa of male infertility patients may have implications for the health of children conceived in vitro and serves as a driver for current research into the origins of free radical generation in the germ line.展开更多
Experimental evidence shows that cadmium (Cd) could induce oxidative stress and then causes DNA damage in animal cells, however, whether such effect exists in plants is still unclear. In the present study, Vicia fab...Experimental evidence shows that cadmium (Cd) could induce oxidative stress and then causes DNA damage in animal cells, however, whether such effect exists in plants is still unclear. In the present study, Vicia faba plants was exposed to 5 and 10 mg/L Cd for 4 d to investigate the distribution of Cd in plant, the metal effects on the cell lipids, antioxidative enzymes and DNA damages in leaves. Cd induced an increase in Cd concentrations in plants. An enhanced level of lipid peroxidation in leaves and an enhanced concentration of H2O2 in root tissues suggested that Cd caused oxidative stress in Vicia faba. Compared with control, Cd-induced enhancement in superoxide dismutase activity was significant at 5 mg/L than at 10 mg/kg in leaves, by contrast, catalase and peroxidaseactivities were significantly suppressed by Cd addition. DNA damage was detected by neutral/neutral, alkaline/neutral and alkaline/alkaline Comet assay. Increased levels of DNA damages induced by Cd occurred with reference to oxidative stress in leaves, therefore, oxidative stress induced by Cd accumulation in plants contributed to DNA damages and was possibly an important mechanism of Cd-phytotoxicity in Vicia faba plants.展开更多
DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, in...DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis, resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apeptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy.展开更多
The changes of chlorophyll and malondialde-hyde (MDA) contents, plasma membrane permeability confirmed that 0.1 and 1 mmol/L sodium nitroprusside (SNP), a donor of nitric oxide (NO) in vivo, could markedly alleviate t...The changes of chlorophyll and malondialde-hyde (MDA) contents, plasma membrane permeability confirmed that 0.1 and 1 mmol/L sodium nitroprusside (SNP), a donor of nitric oxide (NO) in vivo, could markedly alleviate the oxidative damage to wheat (Triticum aestivum L.) leaves induced by 150 and 300 mmol/L NaCl treatments, respectively. Further results proved that NO significantly enhanced the activities of superoxide dismutase (SOD) and catalase (CAT), both of which separately contributed to the delay of O2- and H2O2 accumulation in wheat leaves under saltstress. Meanwhile, the accumulation of proline was apparently accelerated. Therefore, these results suggested that NO could strongly protect wheat leaves from oxidative damage caused by salt stress.展开更多
文摘One of the major causes of defective sperm function is oxidative stress, which not only disrupts the integrity of sperm DNA but also limits the fertilizing potential of these cells as a result of collateral damage to proteins and lipids in the sperm plasma membrane. The origins of such oxidative stress appear to involve the sperm mitochondria, which have a tendency to generate high leve|s of superoxide anion as a prelude to entering the intrinsic apoptotic cascade. Unfortunately, these cells have very little capacity to respond to such an attack because they only possess the first enzyme in the base excision repair (BER) pathway, 8-oxoguanine glycosylase 1 (OGG1). The latter successfully creates an abasic site, but the spermatozoa cannot process the oxidative lesion further because they lack the downstream proteins (APE1, XRCC1) needed to complete the repair process. It is the responsibility of the oocyte to continue the BER pathway prior to initiation of S-phase of the first mitotic division. If a mistake is made by the oocyte at this stage of development, a mutation will be created that will be represented in every cell in the body. Such mechanisms may explain the increase in childhood cancers and other diseases observed in the offspring of males who have suffered oxidative stress in their germ line as a consequence of age, environmental or lifestyle factors. The high prevalence of oxidative DNA damage in the spermatozoa of male infertility patients may have implications for the health of children conceived in vitro and serves as a driver for current research into the origins of free radical generation in the germ line.
基金Project supported by the Ministry of Science and Technology (No. 2007CB407304).
文摘Experimental evidence shows that cadmium (Cd) could induce oxidative stress and then causes DNA damage in animal cells, however, whether such effect exists in plants is still unclear. In the present study, Vicia faba plants was exposed to 5 and 10 mg/L Cd for 4 d to investigate the distribution of Cd in plant, the metal effects on the cell lipids, antioxidative enzymes and DNA damages in leaves. Cd induced an increase in Cd concentrations in plants. An enhanced level of lipid peroxidation in leaves and an enhanced concentration of H2O2 in root tissues suggested that Cd caused oxidative stress in Vicia faba. Compared with control, Cd-induced enhancement in superoxide dismutase activity was significant at 5 mg/L than at 10 mg/kg in leaves, by contrast, catalase and peroxidaseactivities were significantly suppressed by Cd addition. DNA damage was detected by neutral/neutral, alkaline/neutral and alkaline/alkaline Comet assay. Increased levels of DNA damages induced by Cd occurred with reference to oxidative stress in leaves, therefore, oxidative stress induced by Cd accumulation in plants contributed to DNA damages and was possibly an important mechanism of Cd-phytotoxicity in Vicia faba plants.
文摘DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis, resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apeptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy.
文摘The changes of chlorophyll and malondialde-hyde (MDA) contents, plasma membrane permeability confirmed that 0.1 and 1 mmol/L sodium nitroprusside (SNP), a donor of nitric oxide (NO) in vivo, could markedly alleviate the oxidative damage to wheat (Triticum aestivum L.) leaves induced by 150 and 300 mmol/L NaCl treatments, respectively. Further results proved that NO significantly enhanced the activities of superoxide dismutase (SOD) and catalase (CAT), both of which separately contributed to the delay of O2- and H2O2 accumulation in wheat leaves under saltstress. Meanwhile, the accumulation of proline was apparently accelerated. Therefore, these results suggested that NO could strongly protect wheat leaves from oxidative damage caused by salt stress.