垂直起降(Vertical takeoff and landing,VTOL)飞行器是具有3个自由度、2个控制输入的非线性欠驱动控制系统,为了解决严重耦合的VTOL欠驱动系统的输出跟踪问题,首先将VTOL动力学模型解耦成一个最小相位系统和一个非最小相位系统,然后分...垂直起降(Vertical takeoff and landing,VTOL)飞行器是具有3个自由度、2个控制输入的非线性欠驱动控制系统,为了解决严重耦合的VTOL欠驱动系统的输出跟踪问题,首先将VTOL动力学模型解耦成一个最小相位系统和一个非最小相位系统,然后分别针对这两个解耦子系统设计滑模控制器,并通过Lyapunov理论证明系统的稳定性,最后仿真结果表明所设计的滑模控制器实现了对轨迹的无稳态误差跟踪,具有较好的鲁棒性,能够为此类欠驱动系统的输出跟踪问题提供设计参考。展开更多
In this paper, the output tracking control is investigated for a class of nonlinear systems when only output is available for feedback. Based on the multivariable analog of circle criterion, an observer is first intro...In this paper, the output tracking control is investigated for a class of nonlinear systems when only output is available for feedback. Based on the multivariable analog of circle criterion, an observer is first introduced. Then, the observer-based output tracking controller is constructively designed by using the integral backstepping approach together with completing square. It is shown that, under relatively mild conditions, all the closed-loop signals are uniformly bounded. Meanwhile the system output asymptotically tracks the desired output. A simulation example is given to illustrate the effectiveness of the theoretical results.展开更多
文摘垂直起降(Vertical takeoff and landing,VTOL)飞行器是具有3个自由度、2个控制输入的非线性欠驱动控制系统,为了解决严重耦合的VTOL欠驱动系统的输出跟踪问题,首先将VTOL动力学模型解耦成一个最小相位系统和一个非最小相位系统,然后分别针对这两个解耦子系统设计滑模控制器,并通过Lyapunov理论证明系统的稳定性,最后仿真结果表明所设计的滑模控制器实现了对轨迹的无稳态误差跟踪,具有较好的鲁棒性,能够为此类欠驱动系统的输出跟踪问题提供设计参考。
基金This work was supported by the National Natural Science Foundation of China(No.60304002), and the Science and Technical Development Plan ofShandong Province(No.2004GG4204014).
文摘In this paper, the output tracking control is investigated for a class of nonlinear systems when only output is available for feedback. Based on the multivariable analog of circle criterion, an observer is first introduced. Then, the observer-based output tracking controller is constructively designed by using the integral backstepping approach together with completing square. It is shown that, under relatively mild conditions, all the closed-loop signals are uniformly bounded. Meanwhile the system output asymptotically tracks the desired output. A simulation example is given to illustrate the effectiveness of the theoretical results.