A rice mutant, G069, characteristic of few tiller numbers, was found in anther culture progeny from the F1 hybrid between an indica-japonica cross, Gui630×02428. The mutant has another two major features: delayed...A rice mutant, G069, characteristic of few tiller numbers, was found in anther culture progeny from the F1 hybrid between an indica-japonica cross, Gui630×02428. The mutant has another two major features: delayed tillering development and yellowing apex and margin on the mature leaves. As a donor parent, G069 was further backcrossed with the recurrent parent, 02428, for two turns to develop a BC2F2 population. Genetic analysis in the BC2F2 population showed that the traits of few-tillering and yellowing apex and margin on the mature leaves were controlled by one recessive gene. A pool of equally mixed genomic DNA, from few-tillering individual plants in BC2F2, was constructed to screen polymorphism with simple sequence repeat (SSR) markers in comparison with the 02428 genome. One SSR marker and three restriction fragment length polymorphism (RFLP) markers were found possibly linked with the recessive gene. By using these markers, the gene of few-tillering was mapped on chromosome 2 between RFLP marker C424 and S13984 with a genetic distance of 2.4 cM and 0.6 cM, respectively. The gene is designated ft1.展开更多
The completely dominant earliness was identified in a genie male-sterile and early maturing indica line 6442S-7. F1 progenies from 6442S-7 crossed with thirteen various types of medium- or late-maturing varieties, sha...The completely dominant earliness was identified in a genie male-sterile and early maturing indica line 6442S-7. F1 progenies from 6442S-7 crossed with thirteen various types of medium- or late-maturing varieties, shared the same heading date as 6442S-7. The segregation of heading date in the F2 and B1F1 populations showed that the earliness of 6442S-7 is mainly controlled by two dominant major genes. The local linkage map of one dominant earliness gene harbored in 6442S-7 was constructed with F2 population and four kinds of molecular marker techniques. The results showed that the gene was located between a RFLP marker C515 and a RAPD marker OPI 11.557 on the terminal region of short arm of rice chromosome 3, 10.9cM and 1.5cM from C515 and OPI11.557, respectively. The genetic distances from the target gene to two SSR markers, RM22 and RM231, and one AFLP marker, PT671, were 3.0, 6.7 and 12.4 cM, respectively. This gene, being identified and mapped first, is designated tentatively as Ef-cd(t). As a new genetic resource of completely dominant earliness, 6442S-7 has splendid future in rice improvement.展开更多
In this study, 5 parental rice varieties with different allelopathic potentials were employed in diallel cross [P(P+1)/2] to get a set of genetic materials including parental lines and two generations of F1s. The dyna...In this study, 5 parental rice varieties with different allelopathic potentials were employed in diallel cross [P(P+1)/2] to get a set of genetic materials including parental lines and two generations of F1s. The dynamic heterosis for allelopathy in rice under different environmental conditions, was analyzed by using additive-dominant developmental genetic model. The results indicated that heterosis in both F1 and F2 showed inhibitory effects on shoot and root length of receiver plant(Lactuca sativa L.). Heterosis over mid-parent based on population mean(HMP)in F2 was lower than that in differental environmental conditions, showing 1/2 HMP in F1 The heterosis in rice allelopathy was much higher under the field environmental conditions with lower temperature and weaker sunlight than that under favorable environment, implying that the allel-opthic potential could be increased by stress environment. This finding interpreted the genetic reason that plant could produce more allelochemicals under unfavorable environment.展开更多
文摘A rice mutant, G069, characteristic of few tiller numbers, was found in anther culture progeny from the F1 hybrid between an indica-japonica cross, Gui630×02428. The mutant has another two major features: delayed tillering development and yellowing apex and margin on the mature leaves. As a donor parent, G069 was further backcrossed with the recurrent parent, 02428, for two turns to develop a BC2F2 population. Genetic analysis in the BC2F2 population showed that the traits of few-tillering and yellowing apex and margin on the mature leaves were controlled by one recessive gene. A pool of equally mixed genomic DNA, from few-tillering individual plants in BC2F2, was constructed to screen polymorphism with simple sequence repeat (SSR) markers in comparison with the 02428 genome. One SSR marker and three restriction fragment length polymorphism (RFLP) markers were found possibly linked with the recessive gene. By using these markers, the gene of few-tillering was mapped on chromosome 2 between RFLP marker C424 and S13984 with a genetic distance of 2.4 cM and 0.6 cM, respectively. The gene is designated ft1.
基金the National NatureScience Foundation of China(No.30070469).
文摘The completely dominant earliness was identified in a genie male-sterile and early maturing indica line 6442S-7. F1 progenies from 6442S-7 crossed with thirteen various types of medium- or late-maturing varieties, shared the same heading date as 6442S-7. The segregation of heading date in the F2 and B1F1 populations showed that the earliness of 6442S-7 is mainly controlled by two dominant major genes. The local linkage map of one dominant earliness gene harbored in 6442S-7 was constructed with F2 population and four kinds of molecular marker techniques. The results showed that the gene was located between a RFLP marker C515 and a RAPD marker OPI 11.557 on the terminal region of short arm of rice chromosome 3, 10.9cM and 1.5cM from C515 and OPI11.557, respectively. The genetic distances from the target gene to two SSR markers, RM22 and RM231, and one AFLP marker, PT671, were 3.0, 6.7 and 12.4 cM, respectively. This gene, being identified and mapped first, is designated tentatively as Ef-cd(t). As a new genetic resource of completely dominant earliness, 6442S-7 has splendid future in rice improvement.
基金supported by the National Natural Science Foundation of China(30070068)Provincial Key Scientific and Technological Program(2002F012)Provincial Natural Science Foundation(D0110012)of Fujfan,China.
文摘In this study, 5 parental rice varieties with different allelopathic potentials were employed in diallel cross [P(P+1)/2] to get a set of genetic materials including parental lines and two generations of F1s. The dynamic heterosis for allelopathy in rice under different environmental conditions, was analyzed by using additive-dominant developmental genetic model. The results indicated that heterosis in both F1 and F2 showed inhibitory effects on shoot and root length of receiver plant(Lactuca sativa L.). Heterosis over mid-parent based on population mean(HMP)in F2 was lower than that in differental environmental conditions, showing 1/2 HMP in F1 The heterosis in rice allelopathy was much higher under the field environmental conditions with lower temperature and weaker sunlight than that under favorable environment, implying that the allel-opthic potential could be increased by stress environment. This finding interpreted the genetic reason that plant could produce more allelochemicals under unfavorable environment.